Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists discover key proteins linked to aging and cancer

04.01.2005


Fox Chase Cancer Center researchers have made new discoveries that shed new light on the mystery of why human tissues, such as skin, age. The findings focus on the composition and assembly of key chromosomal protein complexes involved in shutting down reproduction of aging cells. The report by molecular and cell biologist Peter D. Adams, Ph.D. and his colleagues appears in the January 2005 issue of Developmental Cell.



"In the lab, aging cells are called senescent cells. Senescent cells are no longer able to divide but remain metabolically active," Adams explained. "Accumulation of senescent cells over time appears to contribute to changes in tissue form and function commonly associated with aging, like the skin changes that occur between childhood and old age."

Most normal human cells undergo a limited number of cell divisions but are eventually arrested, either through final differentiation or senescence. Differentiation is the process whereby a proliferating cell stops growing and develops into a cell with a specific function, such as a liver cell or a neuron. Senescence is an irreversible stage in a cell’s life cycle and may underlie the human aging process and have an impact on diseases of aging, such as adult cancers.


"Most importantly, the failure of cells to stop growing through differentiation or senescence can lead to the uncontrolled growth of cancer," Adams emphasized. Both senescence and differentiation involve reorganization of chromatin structure --the complex of DNA, RNA and proteins, called histones, in the cell nucleus.

Previous research has shown that as cells reach senescence, a change in chromatin structure, called SAHF (senescence-associated heterochromatin foci), silences the genes that promote the cells’ growth. Adams’ discovery reveals the mechanism of SAHF formation. SAHF are domains of densely packed chromatin that repress activity of the genes that normally drive cell proliferation. Adams and coworkers have identified at least three proteins in the cell that contribute to formation of SAHF. These are called HIRA, ASF1a and PML. Of particular note, PML is named after acute promyelocytic leukemia, a cancer of white blood cells. Scientists have known for sometime that PML suppresses the formation of this cancer, but no one knew why.

Adams’ work suggests the possibility that this cancer arises because PML is unable to do its job in forming SAHF. If so, then extrapolating from recent findings in other cancers, inactivation of PML, HIRA, ASF1a and formation of SAHF may also contribute to other human cancers.

Future work in Adams’ lab will define the molecular details by which HIRA, ASF1a and PML make SAHF. Ultimately, this work might allow rationale design of therapeutics to treat cancer patients and even alleviate some aspects of human aging.

Adams’ co-authors on the new paper include postdoctoral associates Rugang Zhang, Ph.D., and Xiaofen Ye, Ph.D., graduate student Maxim V. Poustovoitov of Russian State Medical University in Moscow, scientific technicians Hidelita A. Santos and Wei Chen, staff scientist Ilya G. Serebriiskii, Ph.D., structural and computational biologist Roland L. Dunbrack, Ph.D., and staff scientist Adrian A. Canutescu, M.D., all at Fox Chase; Sally M. Daganzo, Ph.D., Jan P. Erzberger, Ph.D., James M. Berger, Ph.D., and Paul D. Kaufman, Ph.D., of Lawrence Berkeley National Laboratory; and John R. Pehrson, Ph.D., of the University of Pennsylvania School of Veterinary Medicine.

Poustovoitov is working in Adams’ laboratory as part of a novel partnership with the Russian medical and scientific institutions to provide training at Fox Chase for master’s- and doctoral-level students. Begun in 1998 with Russian State Medical University, the partnership has expanded over the years to include more students and more affiliations with premier Russian research institutions. Students typically intern at Fox Chase for about 18 months, although several have chosen to continue their studies and pursue doctoral research in their host laboratory.

Adams is a Leukemia and Lymphoma Society Scholar. Grants from the Department of Defense, the National Institutes of Health and the American Federation for Aging Research also helped support the new work on senescent cells.

Karen C. Mallet | EurekAlert!
Further information:
http://www.fccc.edu

More articles from Life Sciences:

nachricht Newly designed molecule binds nitrogen
23.02.2018 | Julius-Maximilians-Universität Würzburg

nachricht Atomic Design by Water
23.02.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>