Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Transplantation of monkey embryonic stem cells reverses Parkinson disease in primates

04.01.2005


The replenishment of missing neurons in the brain as a treatment for Parkinson disease reached the stage of human trials over 15 years ago, however the field is still in its infancy. Researchers from Kyoto University have now shown that dopamine-producing neurons (DA neurons) generated from monkey embryonic stem cells and transplanted into areas of the brain where these neurons have degenerated in a monkey model of Parkinson disease, can reverse parkinsonism. Their results appear in the January 3 issue of the Journal of Clinical Investigation.



Studies of animal models of Parkinson disease as well as clinical investigations, have shown that transplantation of fetal DA neurons can relieve the symptoms this disease. However the technical and ethical difficulties in obtaining sufficient and appropriate donor fetal brain tissue have limited the application of this therapy.

These researchers previously demonstrated that mouse embryonic stem cells can differentiate into neurons when cultured under specific conditions. These same culture conditions, technically simple and efficient, were recently applied to primate embryonic stem cells and resulted in the generation of large numbers of DA neurons. In their current JCI study, Jun Takahashi and colleagues generated neurons from monkey embryonic stem cells and exposed these cells to FGF20, a growth factor that is produced exclusively in the area of the brain affected by Parkinson disease and is reported to have a protective effect on DA neurons. The authors observed increased DA neuron development and subsequently transplanted these neurons into monkeys treated with an agent called MPTP, which is considered a primate model for Parkinson disease. These transplanted cells were able to function as DA neurons and diminished Parkinsonian symptoms.


In an accompanying commentary, J. William Langston from the Parkinson’s Institute, California, describes this study as a milestone in the development of stem cell technology but cautions that while the observations are encouraging, the reported number of surviving DA neurons was very low, only 1–3% of the cells surviving, well below the estimated number of DA neurons that survive after fetal cell transplants (approximately 10%). While this may be a difference observed between transplantation in monkeys and humans, Langston stresses that it may be necessary for far more DA neurons to survive and for that survival to be long lasting in order to render this approach as a useful therapy in humans.

Langston highlights that "clearly the study reported here will advance research aimed at validating the use of stem cells to treat neurodegenerative disease" and this is most welcome particularly as investigators face yet another presidential moratorium endeavoring to limit the number of human stem cell lines that can be used for future research and treatment.

Brooke Grindlinger | EurekAlert!
Further information:
http://www.the-jci.org

More articles from Life Sciences:

nachricht Making fuel out of thick air
08.12.2017 | DOE/Argonne National Laboratory

nachricht ‘Spying’ on the hidden geometry of complex networks through machine intelligence
08.12.2017 | Technische Universität Dresden

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Midwife and signpost for photons

11.12.2017 | Physics and Astronomy

How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas

11.12.2017 | Earth Sciences

PhoxTroT: Optical Interconnect Technologies Revolutionized Data Centers and HPC Systems

11.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>