Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New painkiller was born in Utah

03.01.2005


Undergrad discovered natural form in venomous snails in 1979

The natural form of Prialt – a new drug for severe pain approved this week by the U.S. Food and Drug Administration – was discovered at the University of Utah in 1979 by an incoming freshman studying toxins produced by cone snails.

The student, J. Michael McIntosh, worked in the laboratory of University of Utah biologist Baldomero "Toto" Olivera, the summer before his freshman year as the result of a scholarship interview. Now, 25 years later, Olivera is a distinguished professor of biology who still studies cone snails and how substances in their venom may be developed into drugs, and McIntosh is a professor of psychiatry and research professor of biology at the university.



McIntosh says his experience as an 18-year-old working in Olivera’s laboratory shows "the university provides a very unusual opportunity for undergraduate students to participate in cutting-edge research that can make a real difference."

Olivera says McIntosh first isolated and characterized the painkiller in the venom of the fish-hunting cone snail Conus magus, or magician’s cone, which is about 1.5 inches long and thus too small to kill people it stings, as do some larger cone snails.

McIntosh discovered a component or "factor" in the venom affected the nervous system. He purified it and determined its chemical structure. Later, University of Utah biologist Doju Yoshikami determined the factor blocked the transmission of nerve signals through certain connections or synapses between nerve cells.

Olivera and Yoshikami developed the factor – named omega-MVIIA, or omega conotoxin M seven A – for use in basic research in neuroscience. "It blocks communication between nerve cells," allowing researchers to learn what nerve circuits do normally by seeing what goes wrong when the connections are blocked, Olivera says.

The university didn’t patent omega-MVIIA because the substance "didn’t have a definitive therapeutic use" at the time, he adds. "As with many basic science discoveries, the clinical importance of the discovery wasn’t appreciated at the time," McIntosh says.

Olivera and Yoshikami collaborated in basic research on omega-MVIIA with George Miljanich, who worked at the University of Southern California and later moved to Neurex Corp., where Miljanich explored the substance’s therapeutic potential.

Neurex ultimately was acquired by Elan Corp., based in Dublin, Ireland. On Dec. 28, Elan got FDA approval to sell Prialt for chronic, intractable pain suffered by people with cancer, AIDS, injury, failed back surgery or certain nervous system disorders.

The drug is expected to be available in the United States in late January 2005. It is injected into fluid surrounding the spinal cord by external or implanted pumps. "The commercial product, Prialt, is chemically identical to omega-MVIIA, except that it is made synthetically instead of by snails," Olivera says.

McIntosh now directs research in the Department of Psychiatry at the University of Utah Health Sciences Center, and treats adolescents and adults who have depression, anxiety, bipolar disorder (manic-depression) and obsessive-compulsive disorder.

Baldomero | EurekAlert!
Further information:
http://www.utah.edu

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>