Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New painkiller was born in Utah

03.01.2005


Undergrad discovered natural form in venomous snails in 1979

The natural form of Prialt – a new drug for severe pain approved this week by the U.S. Food and Drug Administration – was discovered at the University of Utah in 1979 by an incoming freshman studying toxins produced by cone snails.

The student, J. Michael McIntosh, worked in the laboratory of University of Utah biologist Baldomero "Toto" Olivera, the summer before his freshman year as the result of a scholarship interview. Now, 25 years later, Olivera is a distinguished professor of biology who still studies cone snails and how substances in their venom may be developed into drugs, and McIntosh is a professor of psychiatry and research professor of biology at the university.



McIntosh says his experience as an 18-year-old working in Olivera’s laboratory shows "the university provides a very unusual opportunity for undergraduate students to participate in cutting-edge research that can make a real difference."

Olivera says McIntosh first isolated and characterized the painkiller in the venom of the fish-hunting cone snail Conus magus, or magician’s cone, which is about 1.5 inches long and thus too small to kill people it stings, as do some larger cone snails.

McIntosh discovered a component or "factor" in the venom affected the nervous system. He purified it and determined its chemical structure. Later, University of Utah biologist Doju Yoshikami determined the factor blocked the transmission of nerve signals through certain connections or synapses between nerve cells.

Olivera and Yoshikami developed the factor – named omega-MVIIA, or omega conotoxin M seven A – for use in basic research in neuroscience. "It blocks communication between nerve cells," allowing researchers to learn what nerve circuits do normally by seeing what goes wrong when the connections are blocked, Olivera says.

The university didn’t patent omega-MVIIA because the substance "didn’t have a definitive therapeutic use" at the time, he adds. "As with many basic science discoveries, the clinical importance of the discovery wasn’t appreciated at the time," McIntosh says.

Olivera and Yoshikami collaborated in basic research on omega-MVIIA with George Miljanich, who worked at the University of Southern California and later moved to Neurex Corp., where Miljanich explored the substance’s therapeutic potential.

Neurex ultimately was acquired by Elan Corp., based in Dublin, Ireland. On Dec. 28, Elan got FDA approval to sell Prialt for chronic, intractable pain suffered by people with cancer, AIDS, injury, failed back surgery or certain nervous system disorders.

The drug is expected to be available in the United States in late January 2005. It is injected into fluid surrounding the spinal cord by external or implanted pumps. "The commercial product, Prialt, is chemically identical to omega-MVIIA, except that it is made synthetically instead of by snails," Olivera says.

McIntosh now directs research in the Department of Psychiatry at the University of Utah Health Sciences Center, and treats adolescents and adults who have depression, anxiety, bipolar disorder (manic-depression) and obsessive-compulsive disorder.

Baldomero | EurekAlert!
Further information:
http://www.utah.edu

More articles from Life Sciences:

nachricht Rochester scientists discover gene controlling genetic recombination rates
23.04.2018 | University of Rochester

nachricht One step closer to reality
20.04.2018 | Max-Planck-Institut für Entwicklungsbiologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Structured light and nanomaterials open new ways to tailor light at the nanoscale

23.04.2018 | Physics and Astronomy

On the shape of the 'petal' for the dissipation curve

23.04.2018 | Physics and Astronomy

Clean and Efficient – Fraunhofer ISE Presents Hydrogen Technologies at the HANNOVER MESSE 2018

23.04.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>