Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bound for destruction

29.12.2004


Ubiquitination protects against improper Notch signaling



The Notch pathway is an important molecular signaling mechanism whose existence has been known, or at least hinted at, for nearly a century since the identification of a mutant strain of Drosophila fruit flies with "notched" wings in Thomas Hunt Morgan’s lab in 1910. Later studies revealed that the Notch gene encodes a receptor protein that extends through both sides of the cell membrane and which is capable of interacting with a ligand partner, such as the protein Delta, presented on the surface of a neighboring cell. This "juxtracrine" interaction causes the cleavage of an intracellular region of the Notch protein, loosing it into the cytoplasm and triggering the activation of transcription factors within the cell’s nucleus. In addition to its effects on wing structure in flies, Notch signaling is known to be important in a number of neural cell fate determination and developmental processes, and is conserved in species from human to roundworm. In all processes in which it participates, Notch signaling shows the ability to sense a small change in cell fate and amplify it, acting as a sort of contrast enhancement mechanism in cell fate determination.

Notch is activated by a protease that is present ubiquitously in the cell membrane. What has long remained a mystery, however, is the question of how Notch receptors that have not been activated by a ligand are protected from digestion by that protease. Now, in a report published in the December 29 issue of Current Biology, Shigeo Hayashi (Group Director, Laboratory for Morphogenetic Signaling) and colleagues at the RIKEN Center for Developmental Biology (Kobe, Japan) have identified the means by which unstimulated cells protect the Notch receptor from activation.


Recent studies by other labs had shown that a number of stages in the Notch cascade were subject to ubiquitination, in which proteins are tagged by a complex of ubiquitin proteins. This system is best known for its function in marking proteins for degradation by a waste disposal unit known as a proteasome. Hayashi et al. sought to study the possibility that ubiquitination might play a part in rendering the unbound Notch receptor inert. Their attention was drawn to Nedd4 (a member of the ubiquitin ligase family of molecules that directly bind to proteins marked for degradation), as it had previously been shown that Nedd4 plays a role in the processing of other types of transmembrane proteins. Proteins in the cell membrane must first be internalized through a process known as endocytosis before they can be digested by the proteasome, and indeed other types of ubiquitin ligase have been shown to operate in the endocytosis of ligand-activated Notch.

The group first showed that an increase in nedd4 activity resulted in the nicked wing phenotype characteristic of Notch loss of function and in reductions of the total amount of the Notch intracellular domain in the cytoplasm of treated cells. Taken together, these results suggested that Nedd4 works as an antagonist of Notch signaling at an early stage, prior to the proteolytic cleavage of the receptor’s intracellular domain. Further investigation revealed the specific domain by which Nedd4 interacts with Notch and pinpointed the site of origin for this interaction at the cell membrane, a finding congruent with the idea of Nedd4 as an agent of endocytosis. Nedd4’s role as a suppressor of Notch was illustrated even more plainly when the lab showed that inhibition of Nedd4 results in the upregulation of ligand-independent activation of the Notch pathway.

Nedd4’s place in the greater scheme of Notch signaling became clearer when the group next turned to examine the interaction between Nedd4 and Deltex (Dx), a putative ubiquitin ligase known to bind and activate the Notch receptor. Hayashi’s group found evidence that Nedd4 and Dx vie with each other to regulate Notch activity during endocytosis, and that Nedd4 actually destabilizes Dx in the presence of Notch. This competition between two ubiquitin ligases to permit or suppress activation of a signaling pathway represents a neat solution to the problem confronting cells of how to prevent molecular loose cannons from fouling their precisely ordered workplans.

Doug Sipp | EurekAlert!
Further information:
http://www.cdb.riken.jp

More articles from Life Sciences:

nachricht Scientists discover species of dolphin that existed along South Carolina coast
24.08.2017 | New York Institute of Technology

nachricht The science of fluoride flipping
24.08.2017 | University of North Carolina Health Care

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Scientists discover species of dolphin that existed along South Carolina coast

24.08.2017 | Life Sciences

The science of fluoride flipping

24.08.2017 | Life Sciences

Optimizing therapy planning for cancers of the liver

24.08.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>