Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bound for destruction

29.12.2004


Ubiquitination protects against improper Notch signaling



The Notch pathway is an important molecular signaling mechanism whose existence has been known, or at least hinted at, for nearly a century since the identification of a mutant strain of Drosophila fruit flies with "notched" wings in Thomas Hunt Morgan’s lab in 1910. Later studies revealed that the Notch gene encodes a receptor protein that extends through both sides of the cell membrane and which is capable of interacting with a ligand partner, such as the protein Delta, presented on the surface of a neighboring cell. This "juxtracrine" interaction causes the cleavage of an intracellular region of the Notch protein, loosing it into the cytoplasm and triggering the activation of transcription factors within the cell’s nucleus. In addition to its effects on wing structure in flies, Notch signaling is known to be important in a number of neural cell fate determination and developmental processes, and is conserved in species from human to roundworm. In all processes in which it participates, Notch signaling shows the ability to sense a small change in cell fate and amplify it, acting as a sort of contrast enhancement mechanism in cell fate determination.

Notch is activated by a protease that is present ubiquitously in the cell membrane. What has long remained a mystery, however, is the question of how Notch receptors that have not been activated by a ligand are protected from digestion by that protease. Now, in a report published in the December 29 issue of Current Biology, Shigeo Hayashi (Group Director, Laboratory for Morphogenetic Signaling) and colleagues at the RIKEN Center for Developmental Biology (Kobe, Japan) have identified the means by which unstimulated cells protect the Notch receptor from activation.


Recent studies by other labs had shown that a number of stages in the Notch cascade were subject to ubiquitination, in which proteins are tagged by a complex of ubiquitin proteins. This system is best known for its function in marking proteins for degradation by a waste disposal unit known as a proteasome. Hayashi et al. sought to study the possibility that ubiquitination might play a part in rendering the unbound Notch receptor inert. Their attention was drawn to Nedd4 (a member of the ubiquitin ligase family of molecules that directly bind to proteins marked for degradation), as it had previously been shown that Nedd4 plays a role in the processing of other types of transmembrane proteins. Proteins in the cell membrane must first be internalized through a process known as endocytosis before they can be digested by the proteasome, and indeed other types of ubiquitin ligase have been shown to operate in the endocytosis of ligand-activated Notch.

The group first showed that an increase in nedd4 activity resulted in the nicked wing phenotype characteristic of Notch loss of function and in reductions of the total amount of the Notch intracellular domain in the cytoplasm of treated cells. Taken together, these results suggested that Nedd4 works as an antagonist of Notch signaling at an early stage, prior to the proteolytic cleavage of the receptor’s intracellular domain. Further investigation revealed the specific domain by which Nedd4 interacts with Notch and pinpointed the site of origin for this interaction at the cell membrane, a finding congruent with the idea of Nedd4 as an agent of endocytosis. Nedd4’s role as a suppressor of Notch was illustrated even more plainly when the lab showed that inhibition of Nedd4 results in the upregulation of ligand-independent activation of the Notch pathway.

Nedd4’s place in the greater scheme of Notch signaling became clearer when the group next turned to examine the interaction between Nedd4 and Deltex (Dx), a putative ubiquitin ligase known to bind and activate the Notch receptor. Hayashi’s group found evidence that Nedd4 and Dx vie with each other to regulate Notch activity during endocytosis, and that Nedd4 actually destabilizes Dx in the presence of Notch. This competition between two ubiquitin ligases to permit or suppress activation of a signaling pathway represents a neat solution to the problem confronting cells of how to prevent molecular loose cannons from fouling their precisely ordered workplans.

Doug Sipp | EurekAlert!
Further information:
http://www.cdb.riken.jp

More articles from Life Sciences:

nachricht Flow of cerebrospinal fluid regulates neural stem cell division
22.05.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Chemists at FAU successfully demonstrate imine hydrogenation with inexpensive main group metal
22.05.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>