Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Vollum Institute discovery may unlock human genome

29.12.2004


An Oregon Health & Science University-led development of a technique for identifying control elements that drive the expression of genes in brain cells could unleash the disease-fighting potential of the much-hailed human genome.



Scientists at the OHSU Vollum Institute, which headed the multidisciplinary study appearing in the Dec. 29 edition of the journal Cell, are calling the approach a significant advance in understanding the genome. The Vollum’s director, Richard Goodman, M.D., Ph.D., professor of cell and developmental biology, and biochemistry and molecular biology, OHSU School of Medicine, said the technique could give a critical boost to the new era of genomic discovery set forth when the Human Genome Project was completed early last year. "The question was how to understand the enormous amount of genomic information that has been generated," Goodman said. "Our approach will help unlock the regulatory control of the genome." The approach could heighten understanding of the pathways behind genetic aberrations that cause diabetes, Parkinson’s disease, heart disease, cancer and other diseases, he said.

The Vollum team’s technique, developed in collaboration with scientists at Brookhaven National Laboratory in Upton, N.Y., and State University of New York, Stony Brook, resulted from an effort by Soren Impey, Ph.D., in Goodman’s laboratory to characterize a family of genes regulated by the "cAMP response element binding" protein, or CREB. This well-characterized molecule is among a group of proteins called transcription factors that interact with regulatory elements in DNA that are responsible for increasing or decreasing the level of gene expression in cells.


The technique involves linking DNA from a cell with the transcription factor protein, then isolating the complex through a process called immunoprecipitation. Strips of 21-nucleotide-long DNA are then released from the immunoprecipitated DNA to create "genomic signature tags," which are then identified in the international genome database. The method uncovered about 6,300 regulatory regions that mapped to distinct sites on the genome. "A subset of these regions highlight novel genes," said Impey, assistant professor of neurology, OHSU School of Medicine, and the study’s lead author.

Goodman calls the process "the most comprehensive analysis to date in a metazoan system – that is, a multicellular system – of where transcription factors bind to their genomic targets." It gives scientists a system for mining the entire genome for all the regulatory sites involving a given transcription factor protein. "You can start to put together a transcriptional map of pathways that are involved in cellular function," he said. "In the past, it’s only been possible to look at a very small part of the genome, but now we can look at the whole thing. It’s a big step forward."

David Ginty, Ph.D., professor of neuroscience at The Johns Hopkins University School of Medicine in Baltimore, studies molecular control of growth and survival of neurons in the developing vertebrate nervous system as a Howard Hughes Medical Institute investigator. He said the challenge to exploiting the human genome has been to uncover the relationships between identified genes and to understand how complex patterns of gene expression take place.

But the Goodman lab’s discovery, Ginty said, will help scientists understand how transcription factors coordinate complex genetic patterns and, therefore, how different cells are made and how they function. "The study establishes a beautifully simple approach to identifying mechanisms of complex genomic control," he said. "The method should prove useful for establishing how sets of genes are turned on or off in any given cell type, and how cellular and functional diversity is achieved."

Exploration of the humane genome has been frenzied since the International Human Genome Sequencing Consortium, led in the United States by the National Human Genome Research Institute and the Department of Energy, and The Institute for Genomic Research (TIGR), a private genome sequencing company, announced the completion of the Human Genome Project more than two years ahead of schedule in April 2003. Between 20,000 and 25,000 genes coding for proteins that perform most life functions were found. But there was a problem.

"That’s not very many genes," Goodman said. "And so, in a sense, declaring the genome solved was somewhat arbitrary because it’s solved when you really understand it. If you look at the genome, or the database that the genome provided, what you have is a bunch of letters and it has to be decoded to understand what those letters mean."

Goodman compared the genome to a phone book in which the names were interspersed "with a lot of nonsense letters," and the names themselves were broken into pieces. "And rather than having 26 letters, there are only four, and they’re all mixed up," he said. "It’s hard to know where the genes start and stop."

Said Impey: "Although the Human Genome Project identified about 25,000 protein-coding genes, the instruction set that regulates these genes is, for the most part, unknown. This is important because what makes a cancerous cell different from a noncancerous cell is the set of genes that are turned on or off. These instructions or regulatory regions are believed to be far more numerous than genes, but it was not clear how to identify them." "We developed a novel technique that is able to isolate a comprehensive set of regulatory regions and map them to the entire genome. Our work will help unravel the genomic instruction set that governs how genes are regulated in a given cell type. If one views the genome as a multidimensional puzzle, our method helps make the puzzle a little simpler."

The discovery already has demonstrated its implications for human diseases. Goodman’s lab is working with the OHSU Cancer Institute on a cancer-causing oncogene that arises when a rearrangement of chromosomes generates an abnormal transcription factor. "If you had a technique that would allow you to take that factor and identify what its targets are, you would understand why that oncogene causes cancer," Goodman said.

Another project is examining a transcription factor involved in the differentiation of dopamine-producing cells. By identifying the targets of the transcription factor, stem cells differentiated as dopamine cells could be developed to treat Parkinson’s disease.

And a project with Markus Grompe, M.D., of the OHSU Oregon Stem Cell Center is studying the transcription factor involved in pancreatic beta cell differentiation. "This is a factor that drives the expression of insulin, but also other differentiated properties of a beta cell, so if we can identify all those targets, we’ll understand something about the nature of the development of a beta cell," Goodman said.

Ginty, of The Johns Hopkins University, said the future could even hold answers to such questions as how a neuron in the brain stores information that forms the basis of memory. "The future of genome exploration will bring an understanding of how the genome is controlled to yield different cell types of the body and their various functions," he said.

In addition to Goodman and Impey, study collaborators included: Hyunjoo Cha-Molstad, Jami Dwyer and Gregory Yochum, Vollum Institute; Sean McCorkle and John Dunn, Brookhaven National Laboratory; Jeremy Boss, Emery School of Medicine; Shannon McWeeney, OHSU; and Gail Mandel, State University of New York, Stony Brook.

: Jonathan Modie | EurekAlert!
Further information:
http://www.ohsu.edu

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Solar Collectors from Ultra-High Performance Concrete Combine Energy Efficiency and Aesthetics

16.01.2017 | Trade Fair News

3D scans for the automotive industry

16.01.2017 | Automotive Engineering

Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs

16.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>