Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mice with depression-like behaviors reveal possible source of human depression

28.12.2004


Mice missing a specific protein from their brains react to stress differently. The genetically engineered mice develop an imbalance in a hormone involved in stress responses, and during stressful situations, they behave as if they are depressed. Genetic variations in the same protein may be a significant cause of human depression, according to researchers at Washington University School of Medicine in St. Louis.



Their report will be published in the Proceedings of the National Academy of Sciences, appearing on-line at the journal’s website during the week of Dec. 27 to 31, 2004 and in an upcoming print issue. "A major obstacle to understanding depression has been finding what triggers its onset," says Maureen Boyle, predoctoral fellow and first author of the report. "We felt it was important to look at elements that regulate the body’s stress system."

In response to stress, the brain signals the adrenal gland to release hormones, including glucocorticoid, a hormone that preserves physiological equilibrium in many organs. Because proper levels of glucocorticoid are important for normal function, the brain closely monitors and regulates the hormone.


People with major depressive disorder release excessive amounts of adrenal hormones, including glucocorticoid, possibly because their brains sense stress differently, according to the researchers. "We wanted to find out if depression stems directly from the inability to sense glucocorticoid in the brain," says senior author Louis Muglia, Ph.D., associate professor of pediatrics, of molecular biology and pharmacology and of obstetrics and gynecology. "To test this, we developed an animal model that would tell us if changes in glucocorticoid receptor function could impart the animal equivalent of depression."

The researchers engineered mice that lose glucocorticoid receptors from their forebrains, specifically from the cortex and hippocampus, beginning at about three weeks of age and continuing until they reach a 95 percent loss at six months. The team felt the gradual loss could simulate the time course typical for human development of depression, which commonly begins in late adolescence.

During several stress-related tests, four- and six-month-old engineered mice showed an increase in behaviors suggestive of depression. The receptor-deficient mice also showed less interest in pleasurable stimuli, drinking significantly less of a sugar water solution than normal mice.

The depression-like behaviors closely corresponded to physiological changes. Four- and six-month-old engineered mice had significantly higher blood levels of glucocorticoid than normal mice. While normal mice suppressed their production of glucocorticoid when given a synthetic substitute hormone, the engineered mice showed no change in glucocorticoid levels, demonstrating an impairment in their ability to properly regulate their stress response.

The abnormal regulation of glucocorticoid in the engineered mice indicates that glucocorticoid receptors in the cortex and hippocampus--forebrain regions associated with higher thought, memory and emotion--regulate adrenal hormone levels. This regulatory role for forebrain cells has not been previously proven.

"Our findings in mice lacking glucocorticoid receptors suggest that some people may have a genetic makeup that reacts to stressful experiences by turning down the activity of the glucocorticoid receptor gene," Muglia says. "This may initiate a process leading to depression."

Using the engineered mice, the researchers next will seek genes that interact with glucocorticoid receptors and investigate the mechanism of action of antidepressant drugs. The projects will provide a fuller understanding of the underlying causes of depression and could lead to the development of new, more effective antidepressants, according to Muglia.

Jim Dryden | EurekAlert!
Further information:
http://www.wustl.edu

More articles from Life Sciences:

nachricht CWRU researchers find a chemical solution to shrink digital data storage
22.06.2017 | Case Western Reserve University

nachricht Warming temperatures threaten sea turtles
22.06.2017 | Swansea University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

New 3-D display takes the eye fatigue out of virtual reality

22.06.2017 | Information Technology

New technique makes brain scans better

22.06.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>