Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mice with depression-like behaviors reveal possible source of human depression

28.12.2004


Mice missing a specific protein from their brains react to stress differently. The genetically engineered mice develop an imbalance in a hormone involved in stress responses, and during stressful situations, they behave as if they are depressed. Genetic variations in the same protein may be a significant cause of human depression, according to researchers at Washington University School of Medicine in St. Louis.



Their report will be published in the Proceedings of the National Academy of Sciences, appearing on-line at the journal’s website during the week of Dec. 27 to 31, 2004 and in an upcoming print issue. "A major obstacle to understanding depression has been finding what triggers its onset," says Maureen Boyle, predoctoral fellow and first author of the report. "We felt it was important to look at elements that regulate the body’s stress system."

In response to stress, the brain signals the adrenal gland to release hormones, including glucocorticoid, a hormone that preserves physiological equilibrium in many organs. Because proper levels of glucocorticoid are important for normal function, the brain closely monitors and regulates the hormone.


People with major depressive disorder release excessive amounts of adrenal hormones, including glucocorticoid, possibly because their brains sense stress differently, according to the researchers. "We wanted to find out if depression stems directly from the inability to sense glucocorticoid in the brain," says senior author Louis Muglia, Ph.D., associate professor of pediatrics, of molecular biology and pharmacology and of obstetrics and gynecology. "To test this, we developed an animal model that would tell us if changes in glucocorticoid receptor function could impart the animal equivalent of depression."

The researchers engineered mice that lose glucocorticoid receptors from their forebrains, specifically from the cortex and hippocampus, beginning at about three weeks of age and continuing until they reach a 95 percent loss at six months. The team felt the gradual loss could simulate the time course typical for human development of depression, which commonly begins in late adolescence.

During several stress-related tests, four- and six-month-old engineered mice showed an increase in behaviors suggestive of depression. The receptor-deficient mice also showed less interest in pleasurable stimuli, drinking significantly less of a sugar water solution than normal mice.

The depression-like behaviors closely corresponded to physiological changes. Four- and six-month-old engineered mice had significantly higher blood levels of glucocorticoid than normal mice. While normal mice suppressed their production of glucocorticoid when given a synthetic substitute hormone, the engineered mice showed no change in glucocorticoid levels, demonstrating an impairment in their ability to properly regulate their stress response.

The abnormal regulation of glucocorticoid in the engineered mice indicates that glucocorticoid receptors in the cortex and hippocampus--forebrain regions associated with higher thought, memory and emotion--regulate adrenal hormone levels. This regulatory role for forebrain cells has not been previously proven.

"Our findings in mice lacking glucocorticoid receptors suggest that some people may have a genetic makeup that reacts to stressful experiences by turning down the activity of the glucocorticoid receptor gene," Muglia says. "This may initiate a process leading to depression."

Using the engineered mice, the researchers next will seek genes that interact with glucocorticoid receptors and investigate the mechanism of action of antidepressant drugs. The projects will provide a fuller understanding of the underlying causes of depression and could lead to the development of new, more effective antidepressants, according to Muglia.

Jim Dryden | EurekAlert!
Further information:
http://www.wustl.edu

More articles from Life Sciences:

nachricht Making fuel out of thick air
08.12.2017 | DOE/Argonne National Laboratory

nachricht ‘Spying’ on the hidden geometry of complex networks through machine intelligence
08.12.2017 | Technische Universität Dresden

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Midwife and signpost for photons

11.12.2017 | Physics and Astronomy

How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas

11.12.2017 | Earth Sciences

PhoxTroT: Optical Interconnect Technologies Revolutionized Data Centers and HPC Systems

11.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>