Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

An unusual RNA structure in the SARS virus offers a promising target for antiviral drugs

28.12.2004


Research on the genome of the virus that causes severe acute respiratory syndrome (SARS) has revealed an unusual molecular structure that looks like a promising target for antiviral drugs. A team of scientists at the University of California, Santa Cruz, has determined the three-dimensional shape of this structure, an intricately twisted and folded segment of RNA. Their findings suggest that it may help the virus hijack the protein-building machinery of infected cells.

The SARS virus is a type of RNA virus, meaning that its genetic material is RNA rather than the more familiar DNA found in the chromosomes of everything from bacteria to humans. All RNA viruses have relatively high mutation rates, making their genomes highly variable. In HIV, for example, this high rate of mutation contributes to the rapid appearance of drug-resistant strains of the virus. In SARS and related viruses, however, one segment of the RNA genome--known as the s2m RNA--remains virtually unchanged.

"Because viral evolution has not been able to tamper with this sequence, it is clear that it must be of vital importance to the viruses that have it, but no one knows exactly what its function is," said William Scott, an associate professor of chemistry and biochemistry at UC Santa Cruz.



Scott’s lab used the technique of x-ray crystallography to solve the structure of this RNA element with nearly atomic resolution, revealing where every one of the many thousands of atoms that make up the structure is situated. The results showed several unique and interesting features of the s2m RNA, including a distinctive fold that appears to be capable of binding to certain proteins involved in regulating protein synthesis in cells.

"The structure gives us strong hints about the function, because it forms a fold that has been implicated in binding a certain class of proteins," Scott said. "The structure itself also provides a starting point for designing antiviral drugs that might bind to this RNA and prevent it from doing whatever it is that is vital to the life cycle of the virus."

The UCSC researchers are publishing their findings in the journal PLoS Biology (www.plosbiology.org, Volume 3, Issue 1). The first author of the paper is Michael Robertson, a postdoctoral researcher in Scott’s lab. Robertson and Scott purified large amounts of s2m RNA, crystallized it, bombarded the crystals with x-rays, and determined the structure from the resulting pattern of x-ray scattering.

The other coauthors, in addition to Scott, are Manuel Ares, professor of molecular, cell, and developmental biology and a Howard Hughes Medical Institute (HHMI) professor; Haller Igel, a research associate in the Ares lab; David Haussler, professor of biomolecular engineering and a HHMI investigator; and Robert Baertsch, a graduate student working with Haussler.

All of the authors are affiliated with UCSC’s Center for Molecular Biology of RNA. The strong interdisciplinary connections within the RNA center were a key to making the project possible, Scott said. The investigation brought together bioinformatics experts Baertsch and Haussler, who performed the computational sequence analysis of the genomes of SARS and related viruses; molecular biologists Igel and Ares, who cloned and chemically characterized the s2m RNA; and RNA crystallography experts Robertson and Scott.

"It’s true that exciting discoveries are often made at the interfaces between disciplines, but it’s rare that you see it happening in such a vivid way. This is a great example of interdisciplinary science at work," said Harry Noller, Sinsheimer Professor of Molecular Biology at UCSC and director of the RNA center.

Different types of RNA perform a variety of critical tasks in all living cells. Messenger RNA is the intermediary that carries genetic information from the DNA in the chromosomes to the cellular protein factories, called ribosomes, where the genetic information is translated into proteins. The ribosomes themselves are made primarily of ribosomal RNA.

The SARS s2m RNA is in an untranslated section at one end of each of the messenger RNAs that direct the production of viral proteins in infected cells.

"It hangs on the tail end of the messenger RNA like a little molecular knob," Noller said.

Noller, an expert on the ribosome, noticed that a sharp, 90-degree bend in the s2m RNA structure is similar to a part of the ribosome. "It may only be a superficial resemblance, but you don’t often see this kind of right-angle bend in RNA," Noller said.

This part of the ribosome and the proteins that bind to it are involved in the regulation of protein synthesis, leading Scott and his coauthors to hypothesize that the s2m RNA, by mimicking the ribosomal binding site, may serve to hijack the host cell’s protein-synthesis machinery for use by the virus. This hypothesis will have to be tested by further studies, which are already under way in Ares’s lab.

"The precise function is something they’re going to figure out, no doubt about it, and it’s bound to be something of major importance," Noller said. "When you see a whole class of viruses that have this absolutely conserved structural element, it tells you there’s something really interesting going on here."

Sequence analysis by Haussler and Baertsch found that viruses in two families--coronaviruses (which include the SARS virus) and astroviruses--share the s2m element. About 75 percent of this sequence is absolutely invariant between viral species. Furthermore, an analysis of 38 different SARS variants found absolutely no variation within the s2m sequence.

Other scientists had previously noticed this highly conserved element in astroviruses and a few other viruses, and had given it the s2m name. But no one had any idea what the s2m RNA does that would explain why it is so highly conserved, Haussler said.

According to Scott, the UCSC team’s investigation represents a novel approach in the field known as structural genomics. A more common approach in structural genomics is to determine the three-dimensional shape of a novel protein and compare it to the shapes of proteins with known functions to find clues to the function of the unknown protein.

"We have taken the methodology of conventional structural genomics and extended it to investigate the structure of the RNA genome itself," Scott said.

Ultimately, this research could lead to the development of antiviral drugs that would bind to the s2m RNA and prevent it from carrying out its function. Such drugs might be effective against a range of coronaviruses and astroviruses. While the SARS virus is the most deadly of these, other coronaviruses are common causes of respiratory infections in humans and other animals. Although none of the other human coronaviruses have the s2m RNA, several important animal pathogens do and would be susceptible to a drug that targets s2m.

Astroviruses, meanwhile, are a leading cause of gastrointestinal infections, second only to rotaviruses as a cause of childhood diarrhea. In developing countries, diarrhea is a major cause of death in children. A drug that blocks s2m could help alleviate this suffering, as well as provide another tool in the fight against SARS.

Tim Stephens | EurekAlert!
Further information:
http://www.ucsc.edu

More articles from Life Sciences:

nachricht Repairing damaged hearts with self-healing heart cells
22.08.2017 | National University Health System

nachricht Biochemical 'fingerprints' reveal diabetes progression
22.08.2017 | Umea University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Cholesterol-lowering drugs may fight infectious disease

22.08.2017 | Health and Medicine

Meter-sized single-crystal graphene growth becomes possible

22.08.2017 | Materials Sciences

Repairing damaged hearts with self-healing heart cells

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>