Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First ’atlas’ of key brain genes could speed research on cancer, neurological diseases

27.12.2004


Scientists link gene ’switches’ to specific brain locations



Researchers at Dana-Farber Cancer Institute have compiled the first atlas showing the locations of crucial gene regulators, or switches that determine how different parts of the brain develop – and, in some cases, develop abnormally or malfunction. The scientists say the map will accelerate research on brain tumors and neurological diseases that result from mutations in these switch genes – called "transcription factors." When these genes are altered, the genes they control can go awry, causing abnormalities in the development or function of nerves and related structures.

Although the gene regulators were pinpointed using mouse brains, the map applies to the human brain as well. "This is the first systematic mapping of all of the major brain areas that shows what regulatory genes are expressed in those specific locations," said Quifu Ma, PhD, of Dana-Farber’s Cancer Biology Department. He is senior author of a paper appearing in today’s online issue of the journal Science, along with Charles D. Stiles, PhD, also of Dana-Farber.


Transcription factors are genes that control the expression, or activity, of "target" genes. These factors play a pivotal role in brain development by direction the formation of neurons and supporting cells called glia from uncommitted progenitor cells. Until now, brain transcription factors had not been systematically isolated and their locations within different parts of the brain pinned down.

The map should tell scientists studying different parts of the brain, which transcription factor (TF) genes regulate the development of that brain region, and which of them to investigate as possible causes of brain tumors and other diseases.

The Dana-Farber researchers already have homed in on specific TF genes regulating nerves involved in pain sensation, certain brain tumors, and speech problems caused by abnormally developing motor neurons that control muscles of the tongue.

The map, known as the Mahoney Transcription Factor Atlas, has been placed online where it is freely accessible to researchers studying brain development and disorders. To compile the atlas, the investigators first sifted through databases of information from the Human Genome Project, singling out all genes in the mouse that appeared to be transcription factors: they turned up 1445 of them. Next, they determined that more than 1,000 of these TF’s were expressed in the brains of developing mice. Using genetic probes to investigate thin sections of mouse brains, the scientists found that only 349 of the TF genes were expressed in specific regions, and not throughout the brain, as the majority were. They inferred that these 349 genes, therefore, controlled the development of the particular areas or structures in which they were uniquely expressed.

"This is a manageable subset of transcription factors that are spatially restricted," said Stiles. "This tells you that a particular transcription factor is involved in the formation of some specific kind of cell." Stiles is pursuing TF’s that direct the formation of astrocytes, which are affected in tumors called gliomas. David Rowitch, MD, PhD, of Dana-Farber and an author on the paper, studies transcription factors in the brain’s cerebellum, where tumors called medulloblastomas occur, and Ma has identified TF’s that regulate the nerves involved in the sensation of specific types of pain. Ma’s laboratory is focused on the stubborn problem of cancer pain: He and his students are screening the atlas for transcription factors that regulate development of the neurons that generate the severe pain that is a common symptom of metastatic tumors.

Janet Haley-Dubow | EurekAlert!
Further information:
http://www.dfci.harvard.edu

More articles from Life Sciences:

nachricht Scientists enlist engineered protein to battle the MERS virus
22.05.2017 | University of Toronto

nachricht Insight into enzyme's 3-D structure could cut biofuel costs
19.05.2017 | DOE/Los Alamos National Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

Im Focus: Hydrogen Bonds Directly Detected for the First Time

For the first time, scientists have succeeded in studying the strength of hydrogen bonds in a single molecule using an atomic force microscope. Researchers from the University of Basel’s Swiss Nanoscience Institute network have reported the results in the journal Science Advances.

Hydrogen is the most common element in the universe and is an integral part of almost all organic compounds. Molecules and sections of macromolecules are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

Media accreditation opens for historic year at European Health Forum Gastein

16.05.2017 | Event News

 
Latest News

New approach to revolutionize the production of molecular hydrogen

22.05.2017 | Materials Sciences

Scientists enlist engineered protein to battle the MERS virus

22.05.2017 | Life Sciences

Experts explain origins of topographic relief on Earth, Mars and Titan

22.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>