Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First ’atlas’ of key brain genes could speed research on cancer, neurological diseases

27.12.2004


Scientists link gene ’switches’ to specific brain locations



Researchers at Dana-Farber Cancer Institute have compiled the first atlas showing the locations of crucial gene regulators, or switches that determine how different parts of the brain develop – and, in some cases, develop abnormally or malfunction. The scientists say the map will accelerate research on brain tumors and neurological diseases that result from mutations in these switch genes – called "transcription factors." When these genes are altered, the genes they control can go awry, causing abnormalities in the development or function of nerves and related structures.

Although the gene regulators were pinpointed using mouse brains, the map applies to the human brain as well. "This is the first systematic mapping of all of the major brain areas that shows what regulatory genes are expressed in those specific locations," said Quifu Ma, PhD, of Dana-Farber’s Cancer Biology Department. He is senior author of a paper appearing in today’s online issue of the journal Science, along with Charles D. Stiles, PhD, also of Dana-Farber.


Transcription factors are genes that control the expression, or activity, of "target" genes. These factors play a pivotal role in brain development by direction the formation of neurons and supporting cells called glia from uncommitted progenitor cells. Until now, brain transcription factors had not been systematically isolated and their locations within different parts of the brain pinned down.

The map should tell scientists studying different parts of the brain, which transcription factor (TF) genes regulate the development of that brain region, and which of them to investigate as possible causes of brain tumors and other diseases.

The Dana-Farber researchers already have homed in on specific TF genes regulating nerves involved in pain sensation, certain brain tumors, and speech problems caused by abnormally developing motor neurons that control muscles of the tongue.

The map, known as the Mahoney Transcription Factor Atlas, has been placed online where it is freely accessible to researchers studying brain development and disorders. To compile the atlas, the investigators first sifted through databases of information from the Human Genome Project, singling out all genes in the mouse that appeared to be transcription factors: they turned up 1445 of them. Next, they determined that more than 1,000 of these TF’s were expressed in the brains of developing mice. Using genetic probes to investigate thin sections of mouse brains, the scientists found that only 349 of the TF genes were expressed in specific regions, and not throughout the brain, as the majority were. They inferred that these 349 genes, therefore, controlled the development of the particular areas or structures in which they were uniquely expressed.

"This is a manageable subset of transcription factors that are spatially restricted," said Stiles. "This tells you that a particular transcription factor is involved in the formation of some specific kind of cell." Stiles is pursuing TF’s that direct the formation of astrocytes, which are affected in tumors called gliomas. David Rowitch, MD, PhD, of Dana-Farber and an author on the paper, studies transcription factors in the brain’s cerebellum, where tumors called medulloblastomas occur, and Ma has identified TF’s that regulate the nerves involved in the sensation of specific types of pain. Ma’s laboratory is focused on the stubborn problem of cancer pain: He and his students are screening the atlas for transcription factors that regulate development of the neurons that generate the severe pain that is a common symptom of metastatic tumors.

Janet Haley-Dubow | EurekAlert!
Further information:
http://www.dfci.harvard.edu

More articles from Life Sciences:

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

nachricht CWRU researchers find a chemical solution to shrink digital data storage
22.06.2017 | Case Western Reserve University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>