Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First ’atlas’ of key brain genes could speed research on cancer, neurological diseases

27.12.2004


Scientists link gene ’switches’ to specific brain locations



Researchers at Dana-Farber Cancer Institute have compiled the first atlas showing the locations of crucial gene regulators, or switches that determine how different parts of the brain develop – and, in some cases, develop abnormally or malfunction. The scientists say the map will accelerate research on brain tumors and neurological diseases that result from mutations in these switch genes – called "transcription factors." When these genes are altered, the genes they control can go awry, causing abnormalities in the development or function of nerves and related structures.

Although the gene regulators were pinpointed using mouse brains, the map applies to the human brain as well. "This is the first systematic mapping of all of the major brain areas that shows what regulatory genes are expressed in those specific locations," said Quifu Ma, PhD, of Dana-Farber’s Cancer Biology Department. He is senior author of a paper appearing in today’s online issue of the journal Science, along with Charles D. Stiles, PhD, also of Dana-Farber.


Transcription factors are genes that control the expression, or activity, of "target" genes. These factors play a pivotal role in brain development by direction the formation of neurons and supporting cells called glia from uncommitted progenitor cells. Until now, brain transcription factors had not been systematically isolated and their locations within different parts of the brain pinned down.

The map should tell scientists studying different parts of the brain, which transcription factor (TF) genes regulate the development of that brain region, and which of them to investigate as possible causes of brain tumors and other diseases.

The Dana-Farber researchers already have homed in on specific TF genes regulating nerves involved in pain sensation, certain brain tumors, and speech problems caused by abnormally developing motor neurons that control muscles of the tongue.

The map, known as the Mahoney Transcription Factor Atlas, has been placed online where it is freely accessible to researchers studying brain development and disorders. To compile the atlas, the investigators first sifted through databases of information from the Human Genome Project, singling out all genes in the mouse that appeared to be transcription factors: they turned up 1445 of them. Next, they determined that more than 1,000 of these TF’s were expressed in the brains of developing mice. Using genetic probes to investigate thin sections of mouse brains, the scientists found that only 349 of the TF genes were expressed in specific regions, and not throughout the brain, as the majority were. They inferred that these 349 genes, therefore, controlled the development of the particular areas or structures in which they were uniquely expressed.

"This is a manageable subset of transcription factors that are spatially restricted," said Stiles. "This tells you that a particular transcription factor is involved in the formation of some specific kind of cell." Stiles is pursuing TF’s that direct the formation of astrocytes, which are affected in tumors called gliomas. David Rowitch, MD, PhD, of Dana-Farber and an author on the paper, studies transcription factors in the brain’s cerebellum, where tumors called medulloblastomas occur, and Ma has identified TF’s that regulate the nerves involved in the sensation of specific types of pain. Ma’s laboratory is focused on the stubborn problem of cancer pain: He and his students are screening the atlas for transcription factors that regulate development of the neurons that generate the severe pain that is a common symptom of metastatic tumors.

Janet Haley-Dubow | EurekAlert!
Further information:
http://www.dfci.harvard.edu

More articles from Life Sciences:

nachricht Fingerprint' technique spots frog populations at risk from pollution
27.03.2017 | Lancaster University

nachricht Parallel computation provides deeper insight into brain function
27.03.2017 | Okinawa Institute of Science and Technology (OIST) Graduate University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>