Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First ’atlas’ of key brain genes could speed research on cancer, neurological diseases

27.12.2004


Scientists link gene ’switches’ to specific brain locations



Researchers at Dana-Farber Cancer Institute have compiled the first atlas showing the locations of crucial gene regulators, or switches that determine how different parts of the brain develop – and, in some cases, develop abnormally or malfunction. The scientists say the map will accelerate research on brain tumors and neurological diseases that result from mutations in these switch genes – called "transcription factors." When these genes are altered, the genes they control can go awry, causing abnormalities in the development or function of nerves and related structures.

Although the gene regulators were pinpointed using mouse brains, the map applies to the human brain as well. "This is the first systematic mapping of all of the major brain areas that shows what regulatory genes are expressed in those specific locations," said Quifu Ma, PhD, of Dana-Farber’s Cancer Biology Department. He is senior author of a paper appearing in today’s online issue of the journal Science, along with Charles D. Stiles, PhD, also of Dana-Farber.


Transcription factors are genes that control the expression, or activity, of "target" genes. These factors play a pivotal role in brain development by direction the formation of neurons and supporting cells called glia from uncommitted progenitor cells. Until now, brain transcription factors had not been systematically isolated and their locations within different parts of the brain pinned down.

The map should tell scientists studying different parts of the brain, which transcription factor (TF) genes regulate the development of that brain region, and which of them to investigate as possible causes of brain tumors and other diseases.

The Dana-Farber researchers already have homed in on specific TF genes regulating nerves involved in pain sensation, certain brain tumors, and speech problems caused by abnormally developing motor neurons that control muscles of the tongue.

The map, known as the Mahoney Transcription Factor Atlas, has been placed online where it is freely accessible to researchers studying brain development and disorders. To compile the atlas, the investigators first sifted through databases of information from the Human Genome Project, singling out all genes in the mouse that appeared to be transcription factors: they turned up 1445 of them. Next, they determined that more than 1,000 of these TF’s were expressed in the brains of developing mice. Using genetic probes to investigate thin sections of mouse brains, the scientists found that only 349 of the TF genes were expressed in specific regions, and not throughout the brain, as the majority were. They inferred that these 349 genes, therefore, controlled the development of the particular areas or structures in which they were uniquely expressed.

"This is a manageable subset of transcription factors that are spatially restricted," said Stiles. "This tells you that a particular transcription factor is involved in the formation of some specific kind of cell." Stiles is pursuing TF’s that direct the formation of astrocytes, which are affected in tumors called gliomas. David Rowitch, MD, PhD, of Dana-Farber and an author on the paper, studies transcription factors in the brain’s cerebellum, where tumors called medulloblastomas occur, and Ma has identified TF’s that regulate the nerves involved in the sensation of specific types of pain. Ma’s laboratory is focused on the stubborn problem of cancer pain: He and his students are screening the atlas for transcription factors that regulate development of the neurons that generate the severe pain that is a common symptom of metastatic tumors.

Janet Haley-Dubow | EurekAlert!
Further information:
http://www.dfci.harvard.edu

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>