Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientist discover the cellular roots of graying hair

27.12.2004


Findings could shed new light on malignant melanoma



Few things about growing older are as inevitable and obvious as "going gray," yet scientists have been unable to explain the precise cause of this usually unwelcome transformation.

In a report posted today on the Web site of the journal Science, researchers from Dana-Farber Cancer Institute and Children’s Hospital Boston say they have found the cellular cause of graying hair while investigating the origins of malignant melanoma, the potentially deadly skin cancer.


The scientists traced the loss of hair color to the gradual dying off of adult stem cells that form a reservoir that spawns a continuous supply of new pigment-manufacturing cells, called melanocytes, that give hair its youthful hues. Not only do the non-specialized stem cells become depleted: They also progressively make errors, turning into fully committed pigment cells in the wrong place within the hair follicle, where they are useless for coloring hair.

The new findings won’t lead to a scientific alternative to hair dyes any time soon, if ever, even if they do solve a longstanding puzzle about the underlying mechanism of graying. Of more interest to the researchers is the pattern of cellular signals that triggers the death of pigment stem cells, since melanoma is dangerous for the opposite reason –melanocytes proliferate uncontrollably to form tumors and are hard to kill with treatment.

"Preventing the graying of hair is not our goal," emphasizes David E. Fisher, MD, PhD, director of the Dana-Farber Program in Melanoma, and senior author of the Science paper. "Our goal is to prevent or treat melanoma, and to the extent this research is revealing the life cycles of melanocytes, which are the cells that become cancerous in melanoma, we would love to identify a signal that would make a melanoma cell stop growing."

Fisher and the report’s lead author, Emi K. Nishimura, MD, PhD, also of the melanoma program, are in the Department of Pediatric Oncology at Children’s Hospital Boston as well as at Dana-Farber. The second author, Scott R. Granter, MD, is a pathologist at Brigham and Women’s Hospital.

The American Cancer Society expects about 55,100 people to be diagnosed with melanoma, the most serious form of skin cancer, in 2004, with an estimated 7.910 deaths. Melanoma can be cured when it is detected and treated early, but if the lesion penetrates deeply into the skin it is often fatal. Sun exposure is a major risk factor in the disease, which has been increasing in the past several decades.

Melanocytes, which manufacture and store the pigment that combines with hair-making cells called keratinocytes to color the hair, are specialized cells spawned by colorless melanocyte stem cells. These cells were discovered by Nishimura in 2002.

A pool of undifferentiated melanocyte stem cells resides in the hair follicle, and during the hair’s grow-and-rest cycle, the stem cells give rise to color-making melanocytes that journey to the bottom of the hair follicle: That is where they tint the keratinocytes with the person’s characteristic hue.

By studying mice at progressively older intervals, Fisher and his colleagues discovered that as the rodents aged and their hair began turning gray, the numbers of stem cells diminished in proportion to the loss of color. The scientists were surprised to observe that, at the same time and the same rate, differentiated, pigmented melanocytes were showing up in the follicle at the location where the stem cells resided. Since they were in the wrong place, the pigmented cells likely did nothing to maintain the mice’s hair color.

To see if the cells behaved the same way in humans, the investigators examined human scalp tissue taken at increasing ages, and determined that the same pattern occurred.

Since cell survival in general is influenced by an "anti-death" gene called Bcl2, Fisher’s team analyzed mice lacking this gene. In a dramatic fashion, the mice lost their melanocyte stem cells shortly after birth and quickly went gray. It may be that people who gray prematurely have mutations that knock out Bcl2 activity, Fisher says.

"This tells us there is a requirement for Bcl2 in normal hair follicle cycling," adds Fisher. "So the question is: what in the hair follicle is signaling the stem cells that is absent when aging occurs and the stem cells die off? Now we have a much more refined way of dissecting that signaling pathway in melanoma. Eventually we hope to tap into this death pathway, thereby using drugs to mimic the aging process, to successfully treat melanoma."

The team also made mice lacking a gene, MITF that regulates Bcl2. These mice also went gray, but more gradually than did the mice that had no Bcl2. The loss of MITF activity, the investigators say, appears to be implicated in the mistaken differentiation of melanocyte stem cells that accompanies the stem cells’ depletion. MITF, they conclude, seems to play a crucial role in maintaining the supply of stem cells within the hair follicle, and graying is the result of "incomplete maintenance of melanocyte stem cells."

Janet Haley Dubow | EurekAlert!
Further information:
http://www.dfci.harvard.edu

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>