Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Needling chromosomes yields insights into cell division

23.12.2004


By impaling individual chromosomes with glass needles one thousandth the diameter of a human hair, a Duke University graduate student has tested their "stickiness" to one another during cell division. Her uncanny surgical skills have added a piece to the large and intricate puzzle of how one cell divides into two -- a process fundamental to all organisms.

In the Dec. 14, 2004, issue of Current Biology, Leocadia Paliulis and Bruce Nicklas report their progress in understanding how the pairs of chromosomes in each cell manage to balance their adhesion to one another and their release during cell division. Their work was sponsored by the National Institutes of Health. Chromosomes are the tiny fiber structures in the cell that house its genes. They replicate and separate in the process of cell division.

The exquisite management of adhesion properties between newly divided chromosomes, called chromatids, is crucial if the cells are to divide properly. In this process chromatids are drawn apart to separate poles of the dividing cell so that each new "daughter" cell contains a single copy of each. The same basic process operates in normal cell division, called mitosis, as well as the proliferation of sperm and egg cells called meiosis.



"Chromosomes in mitosis and meiosis have to be held together, because otherwise they don’t attach to the apparatus called the spindle that distributes them to opposite poles," explained Nicklas, who is a Research Professor of Biology. "If they’re held together, then one replicated chromatid can attach to one pole and the other to the opposite pole. But if they are not held together, they attach independently, and often both sister chromatids can go to the same pole rather than to opposite poles. This creates chromosome imbalances that can lead to cancer or chromosomal abnormalities that cause birth defects."

According to Nicklas, it was known that the two sister chromatids adhered to one another and released at the appropriate time during cell division. However, that understanding was based on biochemical experiments that revealed when the "glue" protein called cohesin that holds chromatids was degraded during cell division. Also, microscopic studies had shown that there appeared to be two separate chromatids during an early stage of cell division, so it was believed that they had detached from one another at that time. "What hadn’t been done was to attempt to separate chromatids to directly determine whether they, in fact, are held together or not," said Nicklas. "So, Leocadia set out to use micromanipulation to distinguish between visible separateness and physical separateness."

To study chromatid adhesion, Paliulis mastered the high art of manipulating two infinitesimal glass needles to impale each of two sister chromatids in cultured grasshopper cells at the appropriate time in cell division. Then, she would ever-so-gently apply force to pull them apart. Upon release, if they remained apart it revealed they were separated; but if they snapped back together the researchers would know the chromatids were still attached. Paliulis was a Duke graduate student when she performed the experiments, but is now a postdoctoral fellow at the University of North Carolina at Chapel Hill

Paliulis’s skill in the task was extraordinary, said Nicklas. "First of all the needles are invisible in the cell, so you have to continually move them back and forth to detect their position by how they disturb structures around them. Also, the micromanipulation apparatus is arranged such that your view is up through the bottom of the cell, and the needles are coming down through a layer of oil covering the cell to preserve it.

"So, you also have to constantly adjust the focus to determine where the needle is coming down into the cell. This is difficult with one needle, but with two it’s a terrific challenge; and you really need an almost tactile sense of where the needles are." Nicklas said that even the smallest misstep could result in broken needles, stretched chromatids or ripped-apart cells. However, he said, Paliulis mastered the delicate technique and performed numerous experiments pulling the chromatids apart at different points along their length and at different times during cell division.

The experiments revealed that the chromatids are attached to one another, but that they initially separate at their centers, zipping apart until they are entirely separate. Then, they can be drawn to the opposite poles of the dividing cell. The experiments also revealed that it is the erosion of linkages between the chromatids, and not any tension exerted by the spindle, that causes the chromatids to separate.

Also intriguing, found the researchers, was that the chromatids mysteriously remained stuck to one another at a time when biochemical analysis could not detect any cohesin proteins in the cell. Nicklas believes that the twin chromatids may still have some entanglements between the corresponding DNA strands on each chromatid. DNA, which makes up genes in the cell, replicates itself as a central process in chromosome duplication.

"So, we’re left with the mystery of what molecules hold the chromatids together at this point in cell division," Nicklas said. "But that’s the usual outcome of work in my laboratory and a sign that we’re doing good science since we raise new questions. We lay the mechanistic groundwork for the molecular explanations that have to be made. So, our colleagues who do molecular work are both provoked and challenged by us," he said.

Dennis Meredith | EurekAlert!
Further information:
http://www.duke.edu

More articles from Life Sciences:

nachricht Molecular microscopy illuminates molecular motor motion
26.07.2017 | Penn State

nachricht New virus discovered in migratory bird in Rio Grande do Sul, Brazil
26.07.2017 | Fundação de Amparo à Pesquisa do Estado de São Paulo

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

CCNY physicists master unexplored electron property

26.07.2017 | Physics and Astronomy

Molecular microscopy illuminates molecular motor motion

26.07.2017 | Life Sciences

Large-Mouthed Fish Was Top Predator After Mass Extinction

26.07.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>