Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Weizmann Insitute scientists show how proteins beat the evolutionary stakes

22.12.2004


Evolution is something of a gamble: in order to stay a step ahead of a shifting environment, organisms must change or risk extinction. Yet the instrument of this change, mutation, carries a serious threat: mutations are hundreds of times more likely to be harmful to the organism than advantageous. Now, in a paper published online Nov. 28 in Nature Genetics, a team of scientists at the Weizmann Institute of Science has shown one way that evolving organisms may be hedging their bets.



Dr. Dan Tawfik, who headed the team from the Biological Chemistry Department, believes that proteins with so-called promiscuous or moonlighting activities can provide nature with ready-made starting points for the evolution of new functions. Proteins that have evolved to perform a given function often have the ability to take on other, often completely unrelated tasks as well. For example, one of the enzymes studied by the group, PON1, is known to remove cholesterol from artery walls, as well as to break up a certain chemicals used as pesticides.

Yet its main function is to act as a catalyst for the removal of a class of compounds called lactones that have no connection at all to the other two.


To investigate what kind of evolutionary advantage promiscuity offers, the team created a speeded-up version of evolution in the lab. Mutations were introduced into the genes coding for various proteins in a completely random manner. Evolutionary pressure was then simulated by selecting those mutants with higher levels of activity in one of the promiscuous traits.

After several rounds of mutation and selection, the scientists looked at their enzymes to see what had changed. As expected, they had managed to increase the activity they were selecting for by as much as a hundredfold and more. But how did increasing one skill affect the others?

Interestingly, the levels of the other promiscuous activities also underwent drastic changes. In most cases, the levels dropped dramatically, though in some there was a significant increase. However, the primary function of the enzymes, the one for which they had originally evolved, changed hardly at all. "This is particularly surprising when you consider that all of these activities take place at the exact same site on the enzyme," says Tawfik.

This phenomenon makes sense when viewed in evolutionary terms. "Two contradictory things are necessary for the survival of organisms," he says. "First of all, an organism needs to be robust in the face of mutation – it needs to undergo as little change as possible in its functioning in spite of mutations. But, evolutionary adaptation requires some mutations to induce new traits. It appears that the organism can have it both ways: the main function remains robust while the promiscuous functions are extremely responsive to mutation."

The scientists believe that promiscuity may be an intermediate phase for some evolving proteins. In the face of further evolutionary pressure, the protein line could split, diverging into two distinct genes. This multi-tasking may also partly explain another phenomenon that has been puzzling biologists: rapidly emerging drug and antibiotic resistance, and enzymes that have adapted to break down man-made chemicals that have only been around for 50 years. Natural evolution, according to standard theory, should take thousands and hundreds of thousands of years to work. The key may be in promiscuous functions that have never been under selection pressure. These latent "underground" skills may provide the evolutionary shortcut needed for rapid adaptation.

Dr. Dan Tawfik’s research is supported by the Y. Leon Benoziyo Institute for Molecular Medicine, the Dolfi and Lola Ebner Center for Biomedical Research, the Estelle Funk Foundation, the Dr. Ernst Nathan Fund for Biomedical Research, the Henry S. and Anne Reich Family Foundation, The Harry and Jeanette Weinberg Fund for Molecular Genetics of Cancer and the Eugene & Delores Zemsky Charitable Foundation Inc.

Dr. Tawfik is the incumbent of the Elaine Blond Career Development Chair.

Yivsam Azgad | EurekAlert!
Further information:
http://www.weizmann.ac.il

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>