Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Weizmann Insitute scientists show how proteins beat the evolutionary stakes

22.12.2004


Evolution is something of a gamble: in order to stay a step ahead of a shifting environment, organisms must change or risk extinction. Yet the instrument of this change, mutation, carries a serious threat: mutations are hundreds of times more likely to be harmful to the organism than advantageous. Now, in a paper published online Nov. 28 in Nature Genetics, a team of scientists at the Weizmann Institute of Science has shown one way that evolving organisms may be hedging their bets.



Dr. Dan Tawfik, who headed the team from the Biological Chemistry Department, believes that proteins with so-called promiscuous or moonlighting activities can provide nature with ready-made starting points for the evolution of new functions. Proteins that have evolved to perform a given function often have the ability to take on other, often completely unrelated tasks as well. For example, one of the enzymes studied by the group, PON1, is known to remove cholesterol from artery walls, as well as to break up a certain chemicals used as pesticides.

Yet its main function is to act as a catalyst for the removal of a class of compounds called lactones that have no connection at all to the other two.


To investigate what kind of evolutionary advantage promiscuity offers, the team created a speeded-up version of evolution in the lab. Mutations were introduced into the genes coding for various proteins in a completely random manner. Evolutionary pressure was then simulated by selecting those mutants with higher levels of activity in one of the promiscuous traits.

After several rounds of mutation and selection, the scientists looked at their enzymes to see what had changed. As expected, they had managed to increase the activity they were selecting for by as much as a hundredfold and more. But how did increasing one skill affect the others?

Interestingly, the levels of the other promiscuous activities also underwent drastic changes. In most cases, the levels dropped dramatically, though in some there was a significant increase. However, the primary function of the enzymes, the one for which they had originally evolved, changed hardly at all. "This is particularly surprising when you consider that all of these activities take place at the exact same site on the enzyme," says Tawfik.

This phenomenon makes sense when viewed in evolutionary terms. "Two contradictory things are necessary for the survival of organisms," he says. "First of all, an organism needs to be robust in the face of mutation – it needs to undergo as little change as possible in its functioning in spite of mutations. But, evolutionary adaptation requires some mutations to induce new traits. It appears that the organism can have it both ways: the main function remains robust while the promiscuous functions are extremely responsive to mutation."

The scientists believe that promiscuity may be an intermediate phase for some evolving proteins. In the face of further evolutionary pressure, the protein line could split, diverging into two distinct genes. This multi-tasking may also partly explain another phenomenon that has been puzzling biologists: rapidly emerging drug and antibiotic resistance, and enzymes that have adapted to break down man-made chemicals that have only been around for 50 years. Natural evolution, according to standard theory, should take thousands and hundreds of thousands of years to work. The key may be in promiscuous functions that have never been under selection pressure. These latent "underground" skills may provide the evolutionary shortcut needed for rapid adaptation.

Dr. Dan Tawfik’s research is supported by the Y. Leon Benoziyo Institute for Molecular Medicine, the Dolfi and Lola Ebner Center for Biomedical Research, the Estelle Funk Foundation, the Dr. Ernst Nathan Fund for Biomedical Research, the Henry S. and Anne Reich Family Foundation, The Harry and Jeanette Weinberg Fund for Molecular Genetics of Cancer and the Eugene & Delores Zemsky Charitable Foundation Inc.

Dr. Tawfik is the incumbent of the Elaine Blond Career Development Chair.

Yivsam Azgad | EurekAlert!
Further information:
http://www.weizmann.ac.il

More articles from Life Sciences:

nachricht Synthetic nanoparticles achieve the complexity of protein molecules
24.01.2017 | Carnegie Mellon University

nachricht Immune Defense Without Collateral Damage
24.01.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Arctic melt ponds form when meltwater clogs ice pores

24.01.2017 | Earth Sciences

Synthetic nanoparticles achieve the complexity of protein molecules

24.01.2017 | Life Sciences

PPPL physicist uncovers clues to mechanism behind magnetic reconnection

24.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>