Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Weizmann Insitute scientists show how proteins beat the evolutionary stakes

22.12.2004


Evolution is something of a gamble: in order to stay a step ahead of a shifting environment, organisms must change or risk extinction. Yet the instrument of this change, mutation, carries a serious threat: mutations are hundreds of times more likely to be harmful to the organism than advantageous. Now, in a paper published online Nov. 28 in Nature Genetics, a team of scientists at the Weizmann Institute of Science has shown one way that evolving organisms may be hedging their bets.



Dr. Dan Tawfik, who headed the team from the Biological Chemistry Department, believes that proteins with so-called promiscuous or moonlighting activities can provide nature with ready-made starting points for the evolution of new functions. Proteins that have evolved to perform a given function often have the ability to take on other, often completely unrelated tasks as well. For example, one of the enzymes studied by the group, PON1, is known to remove cholesterol from artery walls, as well as to break up a certain chemicals used as pesticides.

Yet its main function is to act as a catalyst for the removal of a class of compounds called lactones that have no connection at all to the other two.


To investigate what kind of evolutionary advantage promiscuity offers, the team created a speeded-up version of evolution in the lab. Mutations were introduced into the genes coding for various proteins in a completely random manner. Evolutionary pressure was then simulated by selecting those mutants with higher levels of activity in one of the promiscuous traits.

After several rounds of mutation and selection, the scientists looked at their enzymes to see what had changed. As expected, they had managed to increase the activity they were selecting for by as much as a hundredfold and more. But how did increasing one skill affect the others?

Interestingly, the levels of the other promiscuous activities also underwent drastic changes. In most cases, the levels dropped dramatically, though in some there was a significant increase. However, the primary function of the enzymes, the one for which they had originally evolved, changed hardly at all. "This is particularly surprising when you consider that all of these activities take place at the exact same site on the enzyme," says Tawfik.

This phenomenon makes sense when viewed in evolutionary terms. "Two contradictory things are necessary for the survival of organisms," he says. "First of all, an organism needs to be robust in the face of mutation – it needs to undergo as little change as possible in its functioning in spite of mutations. But, evolutionary adaptation requires some mutations to induce new traits. It appears that the organism can have it both ways: the main function remains robust while the promiscuous functions are extremely responsive to mutation."

The scientists believe that promiscuity may be an intermediate phase for some evolving proteins. In the face of further evolutionary pressure, the protein line could split, diverging into two distinct genes. This multi-tasking may also partly explain another phenomenon that has been puzzling biologists: rapidly emerging drug and antibiotic resistance, and enzymes that have adapted to break down man-made chemicals that have only been around for 50 years. Natural evolution, according to standard theory, should take thousands and hundreds of thousands of years to work. The key may be in promiscuous functions that have never been under selection pressure. These latent "underground" skills may provide the evolutionary shortcut needed for rapid adaptation.

Dr. Dan Tawfik’s research is supported by the Y. Leon Benoziyo Institute for Molecular Medicine, the Dolfi and Lola Ebner Center for Biomedical Research, the Estelle Funk Foundation, the Dr. Ernst Nathan Fund for Biomedical Research, the Henry S. and Anne Reich Family Foundation, The Harry and Jeanette Weinberg Fund for Molecular Genetics of Cancer and the Eugene & Delores Zemsky Charitable Foundation Inc.

Dr. Tawfik is the incumbent of the Elaine Blond Career Development Chair.

Yivsam Azgad | EurekAlert!
Further information:
http://www.weizmann.ac.il

More articles from Life Sciences:

nachricht Could this protein protect people against coronary artery disease?
17.11.2017 | University of North Carolina Health Care

nachricht Microbial resident enables beetles to feed on a leafy diet
17.11.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>