Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New technique provides insights into gene regulation

22.12.2004


Researchers at the University of Toronto have developed a new technique that enables them to examine the genetic material of cells in greater detail than ever before, a finding that could lead to better ways to study and diagnose diseases.
The U of T research is published in the Dec. 22 issue of Molecular Cell. The new technique developed by the investigators uses a modified type of "gene chip" and a computer program to accurately monitor alternative splicing, a cellular process through which basic genetic material becomes more complex and acquires the ability to control genetic messages (mRNAs) that are required for the development of complex organisms.

"Now that we can look at mRNA in more detail, it has opened the door to understanding more about some diseases," explains lead investigator Professor Benjamin Blencowe of U of T’s Banting and Best Department of Medical Research (BBDMR) and the Department of Medical Genetics and Microbiology, who notes out-of-control RNA splicing is involved in many human diseases, including cancers and birth defects. "The new information we can now obtain could also provide insights into new treatments."


Each cell in the human body contains about 25,000 genes. Although human tissues and organs all have the same genes, some of the genes are "turned on" and others "off". The complete set of genes in humans is only several times that of budding yeast and close to the number found in the significantly less complex nematode worm, C.elegans, a microscopic ringworm.

How very different organisms develop from comparable numbers and types of genes has been a major question since the genetic similarity was discovered. Scientists are trying to understand what turns a gene "off" or "on", or alters its activity when "on" – in other words, the process of gene regulation.

The answer may lie in the coding segments (exons) of human genes, which are separated by long, non-coding segments (introns). The exons can be spliced in different combinations to generate different genetic messages, or mRNAs, and corresponding protein products. This process, known as alternative splicing, is analogous to the editing of a film sequence, where different combinations of editing can lead to different messages being created.

Presently scientists rely on DNA microarrays, also know as gene chips, to measure the levels of mRNAs. An array is an orderly arrangement of samples of DNA. An experiment with a single DNA microarray can provide researchers information on thousands of genes simultaneously – a dramatic increase in throughput from the era when only one gene could be studied at a time.

The new system developed by the U of T team enables accurate measurements of the levels of individual exons that make up different mRNAs to be attained, which current gene chips are unable to do. These differences found in the individual exons may account for how very similar genetic material can result in marked differences between organisms.

Blencowe developed the system in collaboration with U of T professors Brendan Frey of the Department of Electrical and Computer Engineering and Timothy Hughes of the BBDMR and the Department of Medical Genetics and Microbiology. The research team also included Quaid Morris and Ofer Shai of the Department of Electrical and Computer Engineering and Qun Pan, Christine Misquitta, Wen Zhang, Naveed Mohammad, Tomas Babak, Arneet Saltzman and Henry Siu of the BBDMR.

Christina Marshall | EurekAlert!
Further information:
http://www.utoronto.ca

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>