Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New technique provides insights into gene regulation

22.12.2004


Researchers at the University of Toronto have developed a new technique that enables them to examine the genetic material of cells in greater detail than ever before, a finding that could lead to better ways to study and diagnose diseases.
The U of T research is published in the Dec. 22 issue of Molecular Cell. The new technique developed by the investigators uses a modified type of "gene chip" and a computer program to accurately monitor alternative splicing, a cellular process through which basic genetic material becomes more complex and acquires the ability to control genetic messages (mRNAs) that are required for the development of complex organisms.

"Now that we can look at mRNA in more detail, it has opened the door to understanding more about some diseases," explains lead investigator Professor Benjamin Blencowe of U of T’s Banting and Best Department of Medical Research (BBDMR) and the Department of Medical Genetics and Microbiology, who notes out-of-control RNA splicing is involved in many human diseases, including cancers and birth defects. "The new information we can now obtain could also provide insights into new treatments."


Each cell in the human body contains about 25,000 genes. Although human tissues and organs all have the same genes, some of the genes are "turned on" and others "off". The complete set of genes in humans is only several times that of budding yeast and close to the number found in the significantly less complex nematode worm, C.elegans, a microscopic ringworm.

How very different organisms develop from comparable numbers and types of genes has been a major question since the genetic similarity was discovered. Scientists are trying to understand what turns a gene "off" or "on", or alters its activity when "on" – in other words, the process of gene regulation.

The answer may lie in the coding segments (exons) of human genes, which are separated by long, non-coding segments (introns). The exons can be spliced in different combinations to generate different genetic messages, or mRNAs, and corresponding protein products. This process, known as alternative splicing, is analogous to the editing of a film sequence, where different combinations of editing can lead to different messages being created.

Presently scientists rely on DNA microarrays, also know as gene chips, to measure the levels of mRNAs. An array is an orderly arrangement of samples of DNA. An experiment with a single DNA microarray can provide researchers information on thousands of genes simultaneously – a dramatic increase in throughput from the era when only one gene could be studied at a time.

The new system developed by the U of T team enables accurate measurements of the levels of individual exons that make up different mRNAs to be attained, which current gene chips are unable to do. These differences found in the individual exons may account for how very similar genetic material can result in marked differences between organisms.

Blencowe developed the system in collaboration with U of T professors Brendan Frey of the Department of Electrical and Computer Engineering and Timothy Hughes of the BBDMR and the Department of Medical Genetics and Microbiology. The research team also included Quaid Morris and Ofer Shai of the Department of Electrical and Computer Engineering and Qun Pan, Christine Misquitta, Wen Zhang, Naveed Mohammad, Tomas Babak, Arneet Saltzman and Henry Siu of the BBDMR.

Christina Marshall | EurekAlert!
Further information:
http://www.utoronto.ca

More articles from Life Sciences:

nachricht New photocatalyst speeds up the conversion of carbon dioxide into chemical resources
29.05.2017 | DGIST (Daegu Gyeongbuk Institute of Science and Technology)

nachricht Copper hydroxide nanoparticles provide protection against toxic oxygen radicals in cigarette smoke
29.05.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

New insights into the ancestors of all complex life

29.05.2017 | Earth Sciences

New photocatalyst speeds up the conversion of carbon dioxide into chemical resources

29.05.2017 | Life Sciences

NASA's SDO sees partial eclipse in space

29.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>