Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Animal studies show stem cells might make biological pacemaker

21.12.2004


In experiments in the lab and with guinea pigs, researchers from Johns Hopkins have found the first evidence that genetically engineered heart cells derived from human embryonic stem (ES) cells might one day be a promising biological alternative to the electronic pacemakers used by hundreds of thousands of people worldwide.



Electronic pacemakers are used in children and adults with certain heart conditions that interfere with a normal heartbeat. However, these life-saving devices can’t react the way the heart’s own pacemaker normally does -- for example, raising the heart rate to help us climb stairs or react to a scary movie.

In the researchers’ experiments, described in the Dec. 20 advance online edition of Circulation, human ES cells were genetically engineered to make a green protein, grown in the lab and then encouraged to become heart cells. The researchers then selected clusters of the cells that beat on their own accord, indicating the presence of pacemaking cells. These clusters triggered the unified beating of heart muscle cells taken from rats, and, when implanted into the hearts of guinea pigs, triggered regular beating of the heart itself.


"These implanted cells also responded appropriately to drugs used to slow or speed the heart rate, which electronic pacemakers can’t do," says study leader Ronald Li, Ph.D., assistant professor of medicine. "But many challenges remain before this technique could be used for patients. We want to bring this to the clinic as fast as possible, but we need to be extremely careful. If this process isn’t done properly, it could jeopardize a very promising field."

The genetic engineering of the ES cells, accomplished by Tian Xue, Ph.D., a postdoctoral fellow at the School of Medicine, inserted a gene (for green fluorescence protein) so that the human cells would be easily distinguished from animal cells in the experiments. Since the engineered cells survived and worked properly, other more clinically important genetic engineering of the cells also will probably not interfere with the cells’ fate, say the researchers.

"To our knowledge, these are the first genetically engineered heart cells derived from human ES cells," notes Xue. "We’re now using genetic engineering to customize the pacing rate of these cells, for example. For any future clinical applications, you want to make sure that the beating rate is what you want it to be."

First isolated at the University of Wisconsin, the human ES cells used by the researchers have the natural ability to become any type of cell found in the human body, and therefore they hold the potential to replace damaged cells. But such applications await proof that the desired type of cells can be obtained, isolated and controlled, because expected risks include primitive cells developing into tumors or implanted cells being rejected.

In the researchers’ experiments, clusters of beating human heart cells derived from ES cells were injected into the heart muscle of six guinea pigs. A few days later, the researchers destroyed each animal’s own pacemaking cells, located near the point of injection, by freezing them. Careful electrical measurements on the hearts revealed a new beat, coordinated by the implanted human cells and slower than the animals’ normal heart rate -- likely reflecting humans’ lower heart rate.

To prove that the human heart cells were controlling the beat of the guinea pigs’ hearts, colleagues Fadi Akar, Ph.D., and Gordon Tomaselli, M.D., conducted careful experiments that showed exactly where the electrical signal originated and followed the signal’s conduction across the heart’s surface. Sure enough, the signal started from the transplanted human cells, easy to locate because of their fluorescence.

"We’ve answered three very important questions," says Xue. "We’ve shown that these human cells survived when we put them into the animals, they were able to combine functionally with the animal’s heart muscle, and they didn’t create tumors for as long as we have watched."

But new questions have come up because of these promising results, notes Li. For instance, the researchers don’t know why the animal’s immune system didn’t attack and kill the human cellular "invaders " -- that was a surprise. One possibility is that the cluster of cells didn’t connect enough with the animal’s circulatory system to trigger an immune response, but more experiments will be necessary to see whether that’s the case and, if so, how that might affect the implanted cells’ long-term survival.

The researchers weren’t too surprised that no tumors formed over the course of a few months of observation, however, since they had selected beating heart cells and left behind any cells that weren’t adequately specialized.

The stem cell approach isn’t the first Hopkins research to create a biological pacemaker, but it is likely to be a better choice if the heart is very damaged. In 2002, Hopkins scientists reported that inserting a particular gene into existing heart muscle cells in a guinea pig allowed the cells to create a pacemaking signal. If heart damage is extensive, however, it might be preferable to introduce new pacemaking cells, rather than to convert existing cells into pacemakers, notes Li.

Joanna Downer | EurekAlert!
Further information:
http://www.jhmi.edu

More articles from Life Sciences:

nachricht Cnidarians remotely control bacteria
21.09.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Immune cells may heal bleeding brain after strokes
21.09.2017 | NIH/National Institute of Neurological Disorders and Stroke

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Comet or asteroid? Hubble discovers that a unique object is a binary

21.09.2017 | Physics and Astronomy

Cnidarians remotely control bacteria

21.09.2017 | Life Sciences

Monitoring the heart's mitochondria to predict cardiac arrest?

21.09.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>