Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Blocking molecules protects health of implants

21.12.2004


Blocking a key molecule protects breast implants, permanent catheters, pacemakers, artificial joints, glucose sensors for diabetics, and other biomaterials from rejection and damage by the body, according to a study published this month in The American Journal of Pathology.

The more complicated the function of the implant, the more likely it is to be rendered non-functional due to damage induced by the body, said the lead author, Themis Kyriakides, assistant professor of pathology and a member of the interdepartmental program in Vascular Biology and Transplantation at Yale School of Medicine.

"Implantation of biomaterials and tissue-engineered devices into tissues cause the development of a foreign body reaction that can lead to implant failure," Kyriakides said. "The foreign body reaction has been implicated in the malfunction and failure of numerous devices and implants."



Kyriakides and his colleagues focused on the area of contact between the tissue and the implant, or biomaterial, where foreign body giant cells are formed from the fusion of recruited inflammatory cells that attack the implant. The CC chemokine ligand (CCL)-2, previously known as monocyte chemoattractant protein (MCP)-1, is believed to be responsible for the recruitment of foreign body giant cell precursors to the implant site. This study examined what would happen if the expression or function of CCL2 was eliminated both in mice genetically engineered without the molecule and in other mice where the function of CCL2 was blocked by means of a protein decoy via localized gene delivery.

"What we found is that in the absence of CCL2 these large cells do not form at the site of the implant, therefore protecting the implant from damage," Kyriakides said. He said the significance of the finding is discovering a new and more complex role for CCL2 in the foreign body response. The success at blocking the CCL2 in mice using a protein decoy also paves the way for a therapeutic drug target to help sustain implants.

Co-authors include Matt Foster, Grant Keeney, Annabel Tsai, Cecilia Giachelli and Paul Bornstein, all of the University of Washington, Ian Clark-Lewis of the University of British Columbia in Vancouver, Canada, and Barrett Rollins of Harvard.

Jacqueline Weaver | EurekAlert!
Further information:
http://www.yale.edu

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>