Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Blocking molecules protects health of implants

21.12.2004


Blocking a key molecule protects breast implants, permanent catheters, pacemakers, artificial joints, glucose sensors for diabetics, and other biomaterials from rejection and damage by the body, according to a study published this month in The American Journal of Pathology.

The more complicated the function of the implant, the more likely it is to be rendered non-functional due to damage induced by the body, said the lead author, Themis Kyriakides, assistant professor of pathology and a member of the interdepartmental program in Vascular Biology and Transplantation at Yale School of Medicine.

"Implantation of biomaterials and tissue-engineered devices into tissues cause the development of a foreign body reaction that can lead to implant failure," Kyriakides said. "The foreign body reaction has been implicated in the malfunction and failure of numerous devices and implants."



Kyriakides and his colleagues focused on the area of contact between the tissue and the implant, or biomaterial, where foreign body giant cells are formed from the fusion of recruited inflammatory cells that attack the implant. The CC chemokine ligand (CCL)-2, previously known as monocyte chemoattractant protein (MCP)-1, is believed to be responsible for the recruitment of foreign body giant cell precursors to the implant site. This study examined what would happen if the expression or function of CCL2 was eliminated both in mice genetically engineered without the molecule and in other mice where the function of CCL2 was blocked by means of a protein decoy via localized gene delivery.

"What we found is that in the absence of CCL2 these large cells do not form at the site of the implant, therefore protecting the implant from damage," Kyriakides said. He said the significance of the finding is discovering a new and more complex role for CCL2 in the foreign body response. The success at blocking the CCL2 in mice using a protein decoy also paves the way for a therapeutic drug target to help sustain implants.

Co-authors include Matt Foster, Grant Keeney, Annabel Tsai, Cecilia Giachelli and Paul Bornstein, all of the University of Washington, Ian Clark-Lewis of the University of British Columbia in Vancouver, Canada, and Barrett Rollins of Harvard.

Jacqueline Weaver | EurekAlert!
Further information:
http://www.yale.edu

More articles from Life Sciences:

nachricht Scientists unlock ability to generate new sensory hair cells
22.02.2017 | Brigham and Women's Hospital

nachricht New insights into the information processing of motor neurons
22.02.2017 | Max Planck Florida Institute for Neuroscience

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>