Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Blocking molecules protects health of implants

21.12.2004


Blocking a key molecule protects breast implants, permanent catheters, pacemakers, artificial joints, glucose sensors for diabetics, and other biomaterials from rejection and damage by the body, according to a study published this month in The American Journal of Pathology.

The more complicated the function of the implant, the more likely it is to be rendered non-functional due to damage induced by the body, said the lead author, Themis Kyriakides, assistant professor of pathology and a member of the interdepartmental program in Vascular Biology and Transplantation at Yale School of Medicine.

"Implantation of biomaterials and tissue-engineered devices into tissues cause the development of a foreign body reaction that can lead to implant failure," Kyriakides said. "The foreign body reaction has been implicated in the malfunction and failure of numerous devices and implants."



Kyriakides and his colleagues focused on the area of contact between the tissue and the implant, or biomaterial, where foreign body giant cells are formed from the fusion of recruited inflammatory cells that attack the implant. The CC chemokine ligand (CCL)-2, previously known as monocyte chemoattractant protein (MCP)-1, is believed to be responsible for the recruitment of foreign body giant cell precursors to the implant site. This study examined what would happen if the expression or function of CCL2 was eliminated both in mice genetically engineered without the molecule and in other mice where the function of CCL2 was blocked by means of a protein decoy via localized gene delivery.

"What we found is that in the absence of CCL2 these large cells do not form at the site of the implant, therefore protecting the implant from damage," Kyriakides said. He said the significance of the finding is discovering a new and more complex role for CCL2 in the foreign body response. The success at blocking the CCL2 in mice using a protein decoy also paves the way for a therapeutic drug target to help sustain implants.

Co-authors include Matt Foster, Grant Keeney, Annabel Tsai, Cecilia Giachelli and Paul Bornstein, all of the University of Washington, Ian Clark-Lewis of the University of British Columbia in Vancouver, Canada, and Barrett Rollins of Harvard.

Jacqueline Weaver | EurekAlert!
Further information:
http://www.yale.edu

More articles from Life Sciences:

nachricht New printing technique uses cells and molecules to recreate biological structures
20.02.2018 | Queen Mary University of London

nachricht In living color: Brightly-colored bacteria could be used to 'grow' paints and coatings
20.02.2018 | University of Cambridge

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

New tech for commercial Lithium-ion batteries finds they can be charged 5 times fast

20.02.2018 | Power and Electrical Engineering

Hidden talents: Converting heat into electricity with pencil and paper

20.02.2018 | Materials Sciences

Rare find from the deep sea

20.02.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>