Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovery of compound could enhance cancer treatments with fewer side effects

21.12.2004


The discovery of a new compound by Michigan State University researchers could lead to improved chemotherapy treatments for different types of cancers – potentially with fewer side effects.

The discovery of the compound – known as SP-4-84 – was made by an MSU team led by Jetze Tepe, an assistant professor of chemistry, and is detailed in the December issue of the journal Chemistry & Biology. The researchers believe that the compound, when used in conjunction with chemotherapy drugs such as cisplatin and camptothecin, can make the anti-cancer drugs much more effective. “This may potentially mean that one could use less than one-tenth of the current drug dosage and still get the same therapeutic results – but fewer side effects – or use the same drug dosage which is now much more effective in its treatment,” Tepe said.

Even though this new compound is in the earliest stage of development, this is potentially good news for the millions of Americans diagnosed with cancer every year. The national Centers for Disease Control and Prevention says more than a half-million Americans die of cancer every year, second only to heart disease. Here is how the newly discovered compound works: Most anti-cancer drugs work by causing cell damage, such as DNA damage, which ultimately kills the cancer cells. However, cancer cells are also prone to repair themselves and survive the damage done by drugs, which renders the drugs less effective.



Tepe and his colleagues found that when SP-4-84 was added to certain anti-cancer drugs, it inhibited the cancer cell’s ability to survive chemotherapeutic treatment. “Essentially,” he said, “it sensitizes only cancer cells to chemotherapeutics by blocking the cancer cell’s ability to survive the damage that was caused by the chemotherapeutic drugs.”

Another problem with chemotherapy drugs is that they generally don’t discriminate between cancer cells and healthy cells. The drugs basically damage all cells that are continuing to replicate. “So, if we’re able to give the patient a drug that remains as effective despite a smaller dose, this could spare the patient a lot of side effects such as severe nausea, kidney or liver damage, and other side effects typically experienced during chemotherapy,” Tepe said.

“Tests preformed with cancer cells in culture found that over a 48-hour period small amounts of SP-4-84 made camptothecin 75 times more effective that conventional treatment,” he said. “However, when we used the compound on non-cancerous cells, there was absolutely no effect. It appears right now that the compound is only selective for cancer cells.” Thus far, SP-4-84 appears to be extremely non-toxic, he said.

In their current work, Tepe and his co-workers have teamed up with MSU’s Carcinogenesis Laboratory, where the teams are evaluating the new compound in mice. "As with all new discoveries, much more work needs to be done to evaluate the potential of this compound for its ability to improve conventional therapeutic treatment,” Tepe said.

Other members of Tepe’s team include graduate students Vasudha Sharma and Satyamaheshwar Peddibhotla, and research associate Theresa Lansdell.

Tom Oswald | EurekAlert!
Further information:
http://www.msu.edu

More articles from Life Sciences:

nachricht Polymers Based on Boron?
18.01.2018 | Julius-Maximilians-Universität Würzburg

nachricht Bioengineered soft microfibers improve T-cell production
18.01.2018 | Columbia University School of Engineering and Applied Science

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Polymers Based on Boron?

18.01.2018 | Life Sciences

Bioengineered soft microfibers improve T-cell production

18.01.2018 | Life Sciences

World’s oldest known oxygen oasis discovered

18.01.2018 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>