Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovery of compound could enhance cancer treatments with fewer side effects

21.12.2004


The discovery of a new compound by Michigan State University researchers could lead to improved chemotherapy treatments for different types of cancers – potentially with fewer side effects.

The discovery of the compound – known as SP-4-84 – was made by an MSU team led by Jetze Tepe, an assistant professor of chemistry, and is detailed in the December issue of the journal Chemistry & Biology. The researchers believe that the compound, when used in conjunction with chemotherapy drugs such as cisplatin and camptothecin, can make the anti-cancer drugs much more effective. “This may potentially mean that one could use less than one-tenth of the current drug dosage and still get the same therapeutic results – but fewer side effects – or use the same drug dosage which is now much more effective in its treatment,” Tepe said.

Even though this new compound is in the earliest stage of development, this is potentially good news for the millions of Americans diagnosed with cancer every year. The national Centers for Disease Control and Prevention says more than a half-million Americans die of cancer every year, second only to heart disease. Here is how the newly discovered compound works: Most anti-cancer drugs work by causing cell damage, such as DNA damage, which ultimately kills the cancer cells. However, cancer cells are also prone to repair themselves and survive the damage done by drugs, which renders the drugs less effective.



Tepe and his colleagues found that when SP-4-84 was added to certain anti-cancer drugs, it inhibited the cancer cell’s ability to survive chemotherapeutic treatment. “Essentially,” he said, “it sensitizes only cancer cells to chemotherapeutics by blocking the cancer cell’s ability to survive the damage that was caused by the chemotherapeutic drugs.”

Another problem with chemotherapy drugs is that they generally don’t discriminate between cancer cells and healthy cells. The drugs basically damage all cells that are continuing to replicate. “So, if we’re able to give the patient a drug that remains as effective despite a smaller dose, this could spare the patient a lot of side effects such as severe nausea, kidney or liver damage, and other side effects typically experienced during chemotherapy,” Tepe said.

“Tests preformed with cancer cells in culture found that over a 48-hour period small amounts of SP-4-84 made camptothecin 75 times more effective that conventional treatment,” he said. “However, when we used the compound on non-cancerous cells, there was absolutely no effect. It appears right now that the compound is only selective for cancer cells.” Thus far, SP-4-84 appears to be extremely non-toxic, he said.

In their current work, Tepe and his co-workers have teamed up with MSU’s Carcinogenesis Laboratory, where the teams are evaluating the new compound in mice. "As with all new discoveries, much more work needs to be done to evaluate the potential of this compound for its ability to improve conventional therapeutic treatment,” Tepe said.

Other members of Tepe’s team include graduate students Vasudha Sharma and Satyamaheshwar Peddibhotla, and research associate Theresa Lansdell.

Tom Oswald | EurekAlert!
Further information:
http://www.msu.edu

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>