Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chemical process developed to use cotton gin residue

20.12.2004


Virginia Tech researchers are working on technologies that could create a new industry from a problem in the state’s cotton-growing region.



"Our goal is to add a value to the cotton crop by using the residue from the cotton to make a valuable product," said Foster A. Agblevor, professor of biological systems engineering in Virginia Tech’s College of Agriculture and Life Sciences.

About 100,000 acres of cotton are grown in the Virginia counties of Southampton, Isle of Wight, Greensville, Sussex, and the City of Suffolk. After the cotton is ginned, the residue left at the processing plant contains the chemical ingredients for products that are commercially valuable. Currently, the residue piles up at the site and must be removed. Because it easily ignites, it can be a hazard, and if it burns, can contribute to air pollution. "We have been able to develop the manufacturing processes that can extract specific chemicals and make two products – ethanol, which can be a fuel in automobiles, and xylitol, a sugar. "Our work shows a manufacturing process for extracting both products simultaneously from the cotton residue so in the future it is possible that a manufacturing company operating in Southside Virginia could produce both the ethanol and the xylitol products," Agblevor said.


Agblevor’s research has shown that the processes work in a laboratory. Along with students and technicians at Virginia Tech’s College of Agriculture and Life Sciences, Agblevor has taken the cotton gin residue and successfully chemically processed the material. The processes allow them to extract the glucose that can be used to make ethanol and the xylose that can be made into xylitol. The preliminary work was supported by the Southern Regional Biomass Energy Program. The project offers a solution to one of cotton production’s problems, he said. "Our estimate is that about 90 gallons of ethanol can be produced from a ton of cotton gin residue. At the end of a ginning season, plant sites in Virginia are piled high with the residue," Agblevor said, "There is enough raw material that needs to be used to make it possible to have a manufacturing process there."

An Iowa firm that produces ethanol from corn is interested in developing the technology. If the technology to use cotton gin residue can work efficiently at a pilot level, it will be possible to use the residue at a commercial level, which will not require government subsidies to make it economically viable. Currently, the production of ethanol from corn receives subsidies to make it profitable.

Mary Ann Johnson | EurekAlert!
Further information:
http://www.vt.edu

More articles from Life Sciences:

nachricht Decoding the genome's cryptic language
27.02.2017 | University of California - San Diego

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>