Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chemical process developed to use cotton gin residue

20.12.2004


Virginia Tech researchers are working on technologies that could create a new industry from a problem in the state’s cotton-growing region.



"Our goal is to add a value to the cotton crop by using the residue from the cotton to make a valuable product," said Foster A. Agblevor, professor of biological systems engineering in Virginia Tech’s College of Agriculture and Life Sciences.

About 100,000 acres of cotton are grown in the Virginia counties of Southampton, Isle of Wight, Greensville, Sussex, and the City of Suffolk. After the cotton is ginned, the residue left at the processing plant contains the chemical ingredients for products that are commercially valuable. Currently, the residue piles up at the site and must be removed. Because it easily ignites, it can be a hazard, and if it burns, can contribute to air pollution. "We have been able to develop the manufacturing processes that can extract specific chemicals and make two products – ethanol, which can be a fuel in automobiles, and xylitol, a sugar. "Our work shows a manufacturing process for extracting both products simultaneously from the cotton residue so in the future it is possible that a manufacturing company operating in Southside Virginia could produce both the ethanol and the xylitol products," Agblevor said.


Agblevor’s research has shown that the processes work in a laboratory. Along with students and technicians at Virginia Tech’s College of Agriculture and Life Sciences, Agblevor has taken the cotton gin residue and successfully chemically processed the material. The processes allow them to extract the glucose that can be used to make ethanol and the xylose that can be made into xylitol. The preliminary work was supported by the Southern Regional Biomass Energy Program. The project offers a solution to one of cotton production’s problems, he said. "Our estimate is that about 90 gallons of ethanol can be produced from a ton of cotton gin residue. At the end of a ginning season, plant sites in Virginia are piled high with the residue," Agblevor said, "There is enough raw material that needs to be used to make it possible to have a manufacturing process there."

An Iowa firm that produces ethanol from corn is interested in developing the technology. If the technology to use cotton gin residue can work efficiently at a pilot level, it will be possible to use the residue at a commercial level, which will not require government subsidies to make it economically viable. Currently, the production of ethanol from corn receives subsidies to make it profitable.

Mary Ann Johnson | EurekAlert!
Further information:
http://www.vt.edu

More articles from Life Sciences:

nachricht Closing in on advanced prostate cancer
13.12.2017 | Institute for Research in Biomedicine (IRB Barcelona)

nachricht Visualizing single molecules in whole cells with a new spin
13.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

A whole-body approach to understanding chemosensory cells

13.12.2017 | Health and Medicine

Water without windows: Capturing water vapor inside an electron microscope

13.12.2017 | Physics and Astronomy

Cellular Self-Digestion Process Triggers Autoimmune Disease

13.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>