Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Microbe’s genome promises insight into Earth’s carbon and sulfur cycling

20.12.2004


Scientists have sequenced the genome of the microorganism Silicibacter pomeroyi, a member of an abundant group of marine bacteria known to impact the Earth’s ecosystem by releasing and consuming atmospheric gases. This genetic blueprint provides insight into the biochemical pathways the bacterium uses to regulate its release of sulfur and carbon monoxide. Atmospheric sulfur serves as a catalyst for cloud formation, in turn, directly affecting the planet’s temperature and energy regulation, while carbon monoxide is a greenhouse gas.



The interdisciplinary research team, led by Mary Ann Moran at the University of Georgia, includes collaborators at The Institute for Genomic Research (TIGR) and six universities. Their work appears in the December 16 issue of Nature.

While everyone is aware that bacteria can cause disease, it’s less obvious that these microorganisms play an important part in the global ecosystem. "Having the genome of S. pomeroyi completely sequenced provides an invaluable tool to understand how an ocean bacterium functions and how it affects the Earth’s atmosphere," says Moran. The knowledge gained from continued study of S. pomeroyi and its genome will be used in the study of related organisms that likewise mediate carbon and sulfur cycling in the ocean. Moran continued, "Admittedly, this is not the only bacterium that influences gas exchange between the ocean and atmosphere, but once we understand how S. pomeroyi functions, we can apply the knowledge to other related marine bacteria."


The genome, similar in size to that of the more familiar Escherichia coli, is composed of a 4.1 million base pair main chromosome and a 491,000 base pair extra-chromosomal piece of DNA. Early investigation of the genome found 4,283 regions in the genome that are predicted to code for the synthesis of proteins and other cellular machinery.

Randi Vines | EurekAlert!
Further information:
http://www.nsf.gov

More articles from Life Sciences:

nachricht Toward a 'smart' patch that automatically delivers insulin when needed
18.01.2017 | American Chemical Society

nachricht 127 at one blow...
18.01.2017 | Stiftung Zoologisches Forschungsmuseum Alexander Koenig, Leibniz-Institut für Biodiversität der Tiere

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>