Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stowers researcher publishes DNA double-strand break repair discovery in Science

20.12.2004


Thomas Kusch, Ph.D., a Senior Research Associate at the Stowers Institute working with Investigator Jerry Workman, Ph.D., has identified a histone-modifying complex from Drosophila melanogaster (fruit flies), which facilitates DNA double-strand repair by locally increasing DNA accessibility at sites of damage. The findings are available in the Dec. 17 issue of Science.



"DNA double strand breaks are regarded as one of the primary causes of cancer," says Kusch. "While there are natural mechanisms within an organism to detect and repair these breaks, factors involved in DNA damage repair must first bypass histones. Histones are proteins that condense DNA and protect it from mechanical and other stresses, but also make DNA rather inaccessible."

Multiprotein complexes are able to modify or mobilize histones to overcome the obstacle imposed by histones, and it has long been assumed that such complexes must act in concert with DNA repair enzymes at sites of DNA double-strand breaks. It was unclear, however, which types of histone-modifying complexes do this job, how they target sites of DNA double-strand breaks, or how they remodel histones to assist DNA repair.


The complex acting in this process turned out to be identical to an already identified human complex that contained a number of candidate tumor suppressors including a specialized histone variant called H2A.X/v. H2A.X/v itself becomes phosphorylated by a DNA damage- recognizing factor in the proximity of DNA double-strand breaks. This finding raised the possibility that the complex, which was called the dTip60 complex, might specifically be attracted by phospho-H2A.X/v, and thus targeted to sites of DNA damage.

Dr. Kusch was able to demonstrate that this complex recognizes phospho-H2A.X/v when present on DNA. It then modifies the phospho-histone by acetylating it, which facilitates its removal from DNA. In a second step, the dTip60 complex removes phospho-H2A.X/v and replaces it with an unmodified form of the histone. Taken together, Dr. Kusch’s findings show that the dTip60 complex increases DNA accessibility at sites of damage for optimal DNA repair and at the same time removes the DNA damage-marker phospho-H2A.X/v to signal the cell that this defect has been successfully repaired.

"These findings answer fundamental questions about DNA double-strand break repair," says Robb Krumlauf, Ph.D., Scientific Director of the Stowers Institute. "They may ultimately help to formulate new strategies of cancer therapy. Dr. Kusch’s research with Dr. Workman is another example of the ground-breaking work being conducted here at the Stowers Institute."

Dr. Kusch will continue to focus on the dTip60 complex in his future research. In addition to Dr. Workman, he was joined in this project by Stowers colleagues Laurence Florens, Ph.D., Managing Director of Proteomics; Selene Swanson, Research Specialist I; Susan Abmayr, Ph.D., Associate Investigator; Mike Washburn,, Ph.D., Director of the Proteomics Center; and colleagues at Scripps Research Institute and the Wadsworth Center.

Marie Jennings | EurekAlert!
Further information:
http://www.stowers-institute.org

More articles from Life Sciences:

nachricht Research team of the HAW Hamburg reanimated ancestral microbe from the depth of the earth
01.03.2017 | Hochschule für Angewandte Wissenschaften Hamburg

nachricht Researchers Imitate Molecular Crowding in Cells
01.03.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

A better way to measure the stiffness of cancer cells

01.03.2017 | Health and Medicine

Exploring the mysteries of supercooled water

01.03.2017 | Physics and Astronomy

Research team of the HAW Hamburg reanimated ancestral microbe from the depth of the earth

01.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>