Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stowers researcher publishes DNA double-strand break repair discovery in Science

20.12.2004


Thomas Kusch, Ph.D., a Senior Research Associate at the Stowers Institute working with Investigator Jerry Workman, Ph.D., has identified a histone-modifying complex from Drosophila melanogaster (fruit flies), which facilitates DNA double-strand repair by locally increasing DNA accessibility at sites of damage. The findings are available in the Dec. 17 issue of Science.



"DNA double strand breaks are regarded as one of the primary causes of cancer," says Kusch. "While there are natural mechanisms within an organism to detect and repair these breaks, factors involved in DNA damage repair must first bypass histones. Histones are proteins that condense DNA and protect it from mechanical and other stresses, but also make DNA rather inaccessible."

Multiprotein complexes are able to modify or mobilize histones to overcome the obstacle imposed by histones, and it has long been assumed that such complexes must act in concert with DNA repair enzymes at sites of DNA double-strand breaks. It was unclear, however, which types of histone-modifying complexes do this job, how they target sites of DNA double-strand breaks, or how they remodel histones to assist DNA repair.


The complex acting in this process turned out to be identical to an already identified human complex that contained a number of candidate tumor suppressors including a specialized histone variant called H2A.X/v. H2A.X/v itself becomes phosphorylated by a DNA damage- recognizing factor in the proximity of DNA double-strand breaks. This finding raised the possibility that the complex, which was called the dTip60 complex, might specifically be attracted by phospho-H2A.X/v, and thus targeted to sites of DNA damage.

Dr. Kusch was able to demonstrate that this complex recognizes phospho-H2A.X/v when present on DNA. It then modifies the phospho-histone by acetylating it, which facilitates its removal from DNA. In a second step, the dTip60 complex removes phospho-H2A.X/v and replaces it with an unmodified form of the histone. Taken together, Dr. Kusch’s findings show that the dTip60 complex increases DNA accessibility at sites of damage for optimal DNA repair and at the same time removes the DNA damage-marker phospho-H2A.X/v to signal the cell that this defect has been successfully repaired.

"These findings answer fundamental questions about DNA double-strand break repair," says Robb Krumlauf, Ph.D., Scientific Director of the Stowers Institute. "They may ultimately help to formulate new strategies of cancer therapy. Dr. Kusch’s research with Dr. Workman is another example of the ground-breaking work being conducted here at the Stowers Institute."

Dr. Kusch will continue to focus on the dTip60 complex in his future research. In addition to Dr. Workman, he was joined in this project by Stowers colleagues Laurence Florens, Ph.D., Managing Director of Proteomics; Selene Swanson, Research Specialist I; Susan Abmayr, Ph.D., Associate Investigator; Mike Washburn,, Ph.D., Director of the Proteomics Center; and colleagues at Scripps Research Institute and the Wadsworth Center.

Marie Jennings | EurekAlert!
Further information:
http://www.stowers-institute.org

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Can we see monkeys from space? Emerging technologies to map biodiversity

23.06.2017 | Information Technology

Understanding animal social networks can aid wildlife conservation

23.06.2017 | Ecology, The Environment and Conservation

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>