Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hummingbirds lose power at high altitudes

20.12.2004


Hummingbirds aren’t known for their power-lifting prowess. But researchers nevertheless put nearly 1,000 Peruvian hummers through lifting trials and flight tests over a two-year stretch in order to find out how their flying abilities are affected by the lower oxygen and thin air of higher elevations.



The results, which appeared this week in the Proceedings of the National Academy of Sciences (PNAS) Online Early Edition, show a clear decline in hummingbirds’ lifting ability with altitude, not unlike that seen in athletes competing at high elevations.

What this means for hummingbirds is less reserve power for the bursts of flight needed to chase off competitors or escape from predators, said researchers from the University of California, Berkeley, and the California Institute of Technology. "The costs of hovering flight are the same across elevations because hummingbirds compensate by having larger wings and by having a larger stroke amplitude," said study leader Douglas Altshuler, a postdoctoral fellow at Caltech. "However, that compensation doesn’t come for free. They don’t have as much excess power at high elevations as they do at low elevations."


"The power margin decreases at higher elevation, primarily because the stroke amplitude of the wing increases to account for the thinner air," added coauthor Robert Dudley, Altshuler’s advisor when both were at the University of Texas, Austin. "If the bird can only flex its wings through a maximum of 180 degrees, that leaves less power available for other things, like ascending and chasing."

Altshuler noted that the many quick movements hummingbirds make would be impaired by a loss of marginal power at high elevations. "When you spend a lot of time watching hummingbirds, you realize they engage in an amazing suite of maneuvers, above and beyond hovering at flowers for nectar or insects," he said. "They are constantly using much more mechanical power to do other interesting things, such as competing with other males and courting females."

Their mating display, for example, consists of repeated vertical ascents and power dives. And they engage in fast forward flight chases to kick other males off their territory.

It’s not surprising, then, that the loss of power and maneuverability at higher elevations affects their social interactions and determines which of them dominates the flower territory. Althshuler showed in his Ph.D. dissertation that "there’s a very strong correlation at high altitudes between maximum power output and how much of that excess power is available, and which birds dominate, which birds control the territory," he said.

The PNAS paper also includes the most complete family tree of hummingbirds ever produced, representing 75 of the approximately 337 known species and most of the known genera. Hummingbirds are found only in the Americas, but occupy many niches from the tip of southern Chile to Alaska.

"To correlate wing characteristics with power margin at different elevations, you have to account for the phylogeny – the family tree that shows you how species are related to one another," said coauthor Jimmy A. McGuire, assistant professor of integrative biology at UC Berkeley. "Since we see an inverse correlation between power margin and elevation, we have to make sure it’s true across a wide variety of species."

McGuire obtained DNA samples from museum specimens, relying mostly upon the tropical bird collections of the Museum of Natural Science at Louisiana State University in Baton Rouge, and analyzed two nuclear and one mitochondrial gene from each species. Though only 75 species are represented in the hummingbird family tree published in PNAS, he actually has completed a tree that encompasses 190 of the known species.

The researchers set out to answer some puzzling questions about hummingbird flight, which is among the most power-hungry activities of any animal, bird or otherwise. Altshuler and Dudley had shown earlier that hummingbirds living at higher elevations have larger wings relative to their weight, presumably to create more lift in the thinner air. Further experiments showed that hummers sweep their wings through a bigger angle, the so-called "stroke amplitude," to compensate further.

So if hummingbirds compensate to make hovering easy at higher elevations, are there no costs involved in moving upslope? If not, why don’t all hummingbirds move higher, where there are more flowers and less competition from other birds and insects? Mountain flowers even appear to have made themselves more attractive to hummingbirds, perhaps to lure them to higher elevations, Altshuler noted. "That was a conundrum," McGuire said. "It didn’t make sense that there is no cost to being at higher elevations."

The new study by Altshuler, Dudley and McGuire shows the true cost is in the power margin that lets hummers do anything beyond basic hovering.

To get sufficient data, Altshuler needed lots of hands in the field, so he decided to seek help from the Earthwatch Institute and use their eco-volunteers to net hummingbirds. He conducted his field experiments over the course of seven expeditions between 1997 and 1999, leading groups at lower elevations near the Amazon and into the mountains around Cuzco, Peru, from 400 meters (1,300 feet) elevation to 4,300 meters (14,100 feet).

"We set up huge lines of mist nets, one after another – up to 30 – and the job of the Earthwatch volunteers was to go through the nets, take all the birds out, release the non-hummingbirds, and bring the hummingbirds back to us," he said. "Netting birds is very satisfying, and the volunteers just loved it; they got to touch and handle the birds all the time. They were great people, amazing people."

In his field laboratory, Althshuler put the hummers through their paces. After weighing and measuring wing size, he filmed them hovering inside a Plexiglas cube to obtain wing beat frequency and stroke amplitude, from which he could calculate the power exerted in normal hovering.

The second experiment, however, measured the maximum power the birds’ muscles were capable of. In a setup originally developed by Dudley and former post-doc Peng Chair, he attached a string of evenly spaced, color-coded beads to the bird’s body and filmed the bird as it tried to lift the string off the floor of the cage.

"When you release them from the floor of the chamber, they fly up to escape, lifting progressively more weight," Altshuler explained. "This gives us in a single test their maximum lift, because they go as high as they can trying to escape. And then they tend to hover briefly, a second or less, and at that moment, we get a snapshot of them with their muscles working as hard as they possible can."

With full data from 347 of nearly 1,000 captured hummingbirds, a sample representing 43 species, Altshuler was able to show that, whereas body mass and power output increase with elevation in hummingbirds, the power margin goes down. "Higher elevations are an appealing niche, and hummingbirds have headed up there, but there are challenges," Altshuler said.

The other important aspect of the paper, a hummingbird family tree encompassing three times the number of species as earlier genealogies, showed a few surprises, too, said McGuire, a specialist in phylogenetic analysis of animal groups. While much of the tree confirms earlier results, the world’s largest hummingbird, the giant hummingbird (Patagona gigas), stood out on its own, perhaps indicating that it has taken its own evolutionary path away from the other hummingbirds. It grows as large as 26 grams – nearly an ounce and almost twice as large as the next largest bird at 15 grams.

Also, two boldly colored hummingbirds – the crimson topaz, Topaza pella, and the white-necked Jacobin, Florisuga mellivora – thought to be members of a group dubbed "the Mangoes," seem to be unrelated to the other Mangoes. They also seem to be more primitive than even the drab hermits, regarded as the most primitive of the hummingbirds. "If these species turn out to be the earliest, deepest lineage of hummingbirds, it would throw into question the presumed phylogeny," McGuire said.

Robert Sanders | EurekAlert!
Further information:
http://www.berkeley.edu

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>