Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research in yeast yields missing link in DNA maintenance machinery

17.12.2004


In a finding akin to discovering pages missing from an antique car repair manual, researchers from The University of Texas M. D. Anderson Cancer Center have linked for the first time two biological processes crucial to cell survival.

The finding, reported in the Dec. 17, 2004, issue of the journal Cell, provides the first link between a cell’s DNA repair machinery and its DNA storage and retrieval machinery. The two processes have been studied independently, and each is essential for proper care and maintenance of the cell’s genetic material, but until now there was little evidence of how the two might work together.

"We have brought together two fields that are essential for proper maintenance of DNA," said Xuetong "Snow" Shen, assistant professor in the Department of Carcinogenesis at M. D. Anderson. "It was generally understood there must be a connection between the two, but no direct connection had ever been seen. We have bridged that gap."



Many types of cancer, including human leukemias and lymphomas, have been linked to defects in DNA maintenance. Shen’s lab studied a particular protein complex, called INO80, that regulates access to DNA. Inside cells, long strands of DNA are wound tightly around a series of proteins called histones. The combination of DNA and its associated proteins is called chromatin. The histone proteins help compact the DNA and help keep it organized within the chromosome, said Shen, but DNA tightly wound around histones is inaccessible. If DNA becomes damaged by radiation, reactive chemicals or ultraviolet light, for example, it must be repaired. But the bulky repair proteins need to gain access to the damaged areas of DNA. That’s where INO80 chromatin remodeling might comes in. Its role, discovered by Shen and his colleagues, is likely to loosen the damaged DNA from the grip of histone proteins so the DNA repair machinery can access the damaged section. When INO80 is not working properly, damaged DNA can go unrepaired. Such damage can lead to unstable cells and eventually to cancer.

"We knew that at least one gene involved in the INO80 complex had been linked to cancer," said Shen. "This research helps provide a potential mechanism to account for those cancers."

The researchers, led by post-doctoral scientist Ashby Morrison, Ph.D., studied how yeast cells repair double-stranded DNA breaks.

"Double strand breaks are the most serious type of DNA damage," said Shen. "The two DNA strands are completely severed. It is a disaster for a cell. If it is not repaired, the chromosomes become unstable and can fuse to other chromosomes. Many types of cancer result from chromosome fusions."

The scientists created an experimental double strand break in the yeast DNA and monitored specially tagged INO80 molecules inside the cells. They found that INO80 proteins recognize a specific form of histone protein called gamma-H2AX that acts as a "flag" or "code" to direct DNA repair proteins to DNA breaks. Once attached to the histone protein, the INO80 proteins most likely loosen the histone grip on DNA so the repair machinery can gain access and repair the broken ends, the scientists report.

In particular, the scientists discovered one member of the INO80 complex, called Nhp10, is crucial to recognizing the histone code for damaged DNA.

Shen first discovered the INO80 complex in 2000 while studying yeast. Since then, he has revealed that this large protein complex plays an important role in making DNA available for copying into RNA. This latest discovery expands the importance of the INO80 complex, showing it is also crucial to helping repair broken DNA. The scientists discovered that if certain members of the INO80 complex are missing, the yeast becomes prone to the kind of serious damage to its genetic material that can lead to cancer in people. "The INO80 complex is found in organisms from yeast to humans," said Shen. "Typically these kinds of universal proteins play important basic biological functions, and that is turning out to be the case here."

The scientists are now working out the precise role that INO80 plays in DNA repair and what the protein complex does to the chromosome structure at the double strand break. "We have introduced a whole new player that has never been seen before in double-strand break repair," said Shen. "This is only the beginning."

In addition to Shen and Morrison, technician Jessica Highland from M. D. Anderson; Nevan Krogan and Jack Greenblatt, Ph.D., University of Toronto; and Ayelet Arbel-Eden and James Haber, Ph.D., Brandeis University, contributed to the research. The research was funded by grants from the National Institutes of Health and M. D. Anderson Cancer Center.

Julie A. Penne | EurekAlert!
Further information:
http://www.mdanderson.org

More articles from Life Sciences:

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

nachricht When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short
23.03.2017 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Steep rise of the Bernese Alps

24.03.2017 | Earth Sciences

How cheetahs stay fit and healthy

24.03.2017 | Life Sciences

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>