Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research in yeast yields missing link in DNA maintenance machinery

17.12.2004


In a finding akin to discovering pages missing from an antique car repair manual, researchers from The University of Texas M. D. Anderson Cancer Center have linked for the first time two biological processes crucial to cell survival.

The finding, reported in the Dec. 17, 2004, issue of the journal Cell, provides the first link between a cell’s DNA repair machinery and its DNA storage and retrieval machinery. The two processes have been studied independently, and each is essential for proper care and maintenance of the cell’s genetic material, but until now there was little evidence of how the two might work together.

"We have brought together two fields that are essential for proper maintenance of DNA," said Xuetong "Snow" Shen, assistant professor in the Department of Carcinogenesis at M. D. Anderson. "It was generally understood there must be a connection between the two, but no direct connection had ever been seen. We have bridged that gap."



Many types of cancer, including human leukemias and lymphomas, have been linked to defects in DNA maintenance. Shen’s lab studied a particular protein complex, called INO80, that regulates access to DNA. Inside cells, long strands of DNA are wound tightly around a series of proteins called histones. The combination of DNA and its associated proteins is called chromatin. The histone proteins help compact the DNA and help keep it organized within the chromosome, said Shen, but DNA tightly wound around histones is inaccessible. If DNA becomes damaged by radiation, reactive chemicals or ultraviolet light, for example, it must be repaired. But the bulky repair proteins need to gain access to the damaged areas of DNA. That’s where INO80 chromatin remodeling might comes in. Its role, discovered by Shen and his colleagues, is likely to loosen the damaged DNA from the grip of histone proteins so the DNA repair machinery can access the damaged section. When INO80 is not working properly, damaged DNA can go unrepaired. Such damage can lead to unstable cells and eventually to cancer.

"We knew that at least one gene involved in the INO80 complex had been linked to cancer," said Shen. "This research helps provide a potential mechanism to account for those cancers."

The researchers, led by post-doctoral scientist Ashby Morrison, Ph.D., studied how yeast cells repair double-stranded DNA breaks.

"Double strand breaks are the most serious type of DNA damage," said Shen. "The two DNA strands are completely severed. It is a disaster for a cell. If it is not repaired, the chromosomes become unstable and can fuse to other chromosomes. Many types of cancer result from chromosome fusions."

The scientists created an experimental double strand break in the yeast DNA and monitored specially tagged INO80 molecules inside the cells. They found that INO80 proteins recognize a specific form of histone protein called gamma-H2AX that acts as a "flag" or "code" to direct DNA repair proteins to DNA breaks. Once attached to the histone protein, the INO80 proteins most likely loosen the histone grip on DNA so the repair machinery can gain access and repair the broken ends, the scientists report.

In particular, the scientists discovered one member of the INO80 complex, called Nhp10, is crucial to recognizing the histone code for damaged DNA.

Shen first discovered the INO80 complex in 2000 while studying yeast. Since then, he has revealed that this large protein complex plays an important role in making DNA available for copying into RNA. This latest discovery expands the importance of the INO80 complex, showing it is also crucial to helping repair broken DNA. The scientists discovered that if certain members of the INO80 complex are missing, the yeast becomes prone to the kind of serious damage to its genetic material that can lead to cancer in people. "The INO80 complex is found in organisms from yeast to humans," said Shen. "Typically these kinds of universal proteins play important basic biological functions, and that is turning out to be the case here."

The scientists are now working out the precise role that INO80 plays in DNA repair and what the protein complex does to the chromosome structure at the double strand break. "We have introduced a whole new player that has never been seen before in double-strand break repair," said Shen. "This is only the beginning."

In addition to Shen and Morrison, technician Jessica Highland from M. D. Anderson; Nevan Krogan and Jack Greenblatt, Ph.D., University of Toronto; and Ayelet Arbel-Eden and James Haber, Ph.D., Brandeis University, contributed to the research. The research was funded by grants from the National Institutes of Health and M. D. Anderson Cancer Center.

Julie A. Penne | EurekAlert!
Further information:
http://www.mdanderson.org

More articles from Life Sciences:

nachricht Molecular Force Sensors
20.09.2017 | Max-Planck-Institut für Biochemie

nachricht Foster tadpoles trigger parental instinct in poison frogs
20.09.2017 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Molecular Force Sensors

20.09.2017 | Life Sciences

Producing electricity during flight

20.09.2017 | Power and Electrical Engineering

Tiny lasers from a gallery of whispers

20.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>