Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Loss of fruit fly retina protein delays blinding light damage

17.12.2004


In experiments with fruit flies, Johns Hopkins researchers have found that blindness induced by constant light results directly from the loss of a key light-detecting protein, rather than from the overall death of cells in the retina, which in humans is a light-sensitive tissue at the back of the eye.

The research, reported in the Dec. 14 issue of Current Biology, overturns the long-standing belief that blindness from chronic light exposure is a direct result of overall retinal degeneration and cell death.

Although many animals, and presumably humans, lose both their retinal cells and vision after exposure to low levels of light for long periods, the relationship between exposure and blindness had been poorly understood.



In the Hopkins experiments, flies whose light-detecting protein rhodopsin was engineered to resist destruction retained their vision twice as long as normal flies, although over time they developed blindness due to delayed decay of rhodopsin. The researchers measured vision damage indirectly by measuring loss of the electrical signals normally initiated by rhodopsin when exposed to light.

"Everyone assumed that the blindness caused by chronic light exposure was an effect of the degeneration and loss of the retinal cells, but our experiments show these are two distinct events caused by two distinct processes," says Craig Montell, Ph.D., professor of biological chemistry in Hopkins’ Institute for Basic Biomedical Sciences. "Understanding how degradation of rhodopsin and other visual proteins contributes to vision loss may help us in the future to reduce the severity of blindness in rare people susceptible to chronic exposure to light."

The light-detecting cells of fruit fly retinas share similarities with rod and cone cells of the human retina and also rely on rhodopsin to detect light and create an electrical signal that is transmitted to the brain.

In the researchers’ experiments, this electrical signal was measured by a tool called an electroretinogram, which uses a contact placed on the surface of the eye. The measured signals get smaller as the flies lose their ability to see.

The researchers used the electroretinogram on normal fruit flies and found that these flies lost both their sight and some retinal cells after nine days of exposure, as expected. The researchers also found that rhodopsin levels were drastically lower after three days of exposure and virtually gone by day 13.

In genetically engineered flies whose rhodopsin destruction was inhibited in various ways, the researchers found no or relatively minor loss of the light-induced signal until much later. Other flies whose rhodopsin destruction had been genetically accelerated went blind twice as fast as normal flies. "We were quite surprised - we thought we’d prove correct what scientists had assumed was happening, but instead we proved that long-held idea wrong," says Montell.

Remarkably, the earliest vision loss in normal flies was reversible for up to three days of light exposure, says Montell. But after three days, when the eyes’ electrical signals were halved, the eyes reached a point of no return and vision never fully recovered. This point should be longer for other animals, since fruitflies’ lifespan is only about 50 days.

The researchers are now searching for other proteins that reduce or prevent vision loss after exposure to constant light. They’re also studying how constant light causes irreversible destruction of rhodopsin.

Joanna Downer | EurekAlert!
Further information:
http://www.current-biology.com/
http://www.jhmi.edu

More articles from Life Sciences:

nachricht What happens in the cell nucleus after fertilization
06.12.2016 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Simple processing technique could cut cost of organic PV and wearable electronics

06.12.2016 | Materials Sciences

3-D printed kidney phantoms aid nuclear medicine dosing calibration

06.12.2016 | Medical Engineering

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>