Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Loss of fruit fly retina protein delays blinding light damage

17.12.2004


In experiments with fruit flies, Johns Hopkins researchers have found that blindness induced by constant light results directly from the loss of a key light-detecting protein, rather than from the overall death of cells in the retina, which in humans is a light-sensitive tissue at the back of the eye.

The research, reported in the Dec. 14 issue of Current Biology, overturns the long-standing belief that blindness from chronic light exposure is a direct result of overall retinal degeneration and cell death.

Although many animals, and presumably humans, lose both their retinal cells and vision after exposure to low levels of light for long periods, the relationship between exposure and blindness had been poorly understood.



In the Hopkins experiments, flies whose light-detecting protein rhodopsin was engineered to resist destruction retained their vision twice as long as normal flies, although over time they developed blindness due to delayed decay of rhodopsin. The researchers measured vision damage indirectly by measuring loss of the electrical signals normally initiated by rhodopsin when exposed to light.

"Everyone assumed that the blindness caused by chronic light exposure was an effect of the degeneration and loss of the retinal cells, but our experiments show these are two distinct events caused by two distinct processes," says Craig Montell, Ph.D., professor of biological chemistry in Hopkins’ Institute for Basic Biomedical Sciences. "Understanding how degradation of rhodopsin and other visual proteins contributes to vision loss may help us in the future to reduce the severity of blindness in rare people susceptible to chronic exposure to light."

The light-detecting cells of fruit fly retinas share similarities with rod and cone cells of the human retina and also rely on rhodopsin to detect light and create an electrical signal that is transmitted to the brain.

In the researchers’ experiments, this electrical signal was measured by a tool called an electroretinogram, which uses a contact placed on the surface of the eye. The measured signals get smaller as the flies lose their ability to see.

The researchers used the electroretinogram on normal fruit flies and found that these flies lost both their sight and some retinal cells after nine days of exposure, as expected. The researchers also found that rhodopsin levels were drastically lower after three days of exposure and virtually gone by day 13.

In genetically engineered flies whose rhodopsin destruction was inhibited in various ways, the researchers found no or relatively minor loss of the light-induced signal until much later. Other flies whose rhodopsin destruction had been genetically accelerated went blind twice as fast as normal flies. "We were quite surprised - we thought we’d prove correct what scientists had assumed was happening, but instead we proved that long-held idea wrong," says Montell.

Remarkably, the earliest vision loss in normal flies was reversible for up to three days of light exposure, says Montell. But after three days, when the eyes’ electrical signals were halved, the eyes reached a point of no return and vision never fully recovered. This point should be longer for other animals, since fruitflies’ lifespan is only about 50 days.

The researchers are now searching for other proteins that reduce or prevent vision loss after exposure to constant light. They’re also studying how constant light causes irreversible destruction of rhodopsin.

Joanna Downer | EurekAlert!
Further information:
http://www.current-biology.com/
http://www.jhmi.edu

More articles from Life Sciences:

nachricht Closing in on advanced prostate cancer
13.12.2017 | Institute for Research in Biomedicine (IRB Barcelona)

nachricht Visualizing single molecules in whole cells with a new spin
13.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

A whole-body approach to understanding chemosensory cells

13.12.2017 | Health and Medicine

Water without windows: Capturing water vapor inside an electron microscope

13.12.2017 | Physics and Astronomy

Cellular Self-Digestion Process Triggers Autoimmune Disease

13.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>