Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Loss of fruit fly retina protein delays blinding light damage

17.12.2004


In experiments with fruit flies, Johns Hopkins researchers have found that blindness induced by constant light results directly from the loss of a key light-detecting protein, rather than from the overall death of cells in the retina, which in humans is a light-sensitive tissue at the back of the eye.

The research, reported in the Dec. 14 issue of Current Biology, overturns the long-standing belief that blindness from chronic light exposure is a direct result of overall retinal degeneration and cell death.

Although many animals, and presumably humans, lose both their retinal cells and vision after exposure to low levels of light for long periods, the relationship between exposure and blindness had been poorly understood.



In the Hopkins experiments, flies whose light-detecting protein rhodopsin was engineered to resist destruction retained their vision twice as long as normal flies, although over time they developed blindness due to delayed decay of rhodopsin. The researchers measured vision damage indirectly by measuring loss of the electrical signals normally initiated by rhodopsin when exposed to light.

"Everyone assumed that the blindness caused by chronic light exposure was an effect of the degeneration and loss of the retinal cells, but our experiments show these are two distinct events caused by two distinct processes," says Craig Montell, Ph.D., professor of biological chemistry in Hopkins’ Institute for Basic Biomedical Sciences. "Understanding how degradation of rhodopsin and other visual proteins contributes to vision loss may help us in the future to reduce the severity of blindness in rare people susceptible to chronic exposure to light."

The light-detecting cells of fruit fly retinas share similarities with rod and cone cells of the human retina and also rely on rhodopsin to detect light and create an electrical signal that is transmitted to the brain.

In the researchers’ experiments, this electrical signal was measured by a tool called an electroretinogram, which uses a contact placed on the surface of the eye. The measured signals get smaller as the flies lose their ability to see.

The researchers used the electroretinogram on normal fruit flies and found that these flies lost both their sight and some retinal cells after nine days of exposure, as expected. The researchers also found that rhodopsin levels were drastically lower after three days of exposure and virtually gone by day 13.

In genetically engineered flies whose rhodopsin destruction was inhibited in various ways, the researchers found no or relatively minor loss of the light-induced signal until much later. Other flies whose rhodopsin destruction had been genetically accelerated went blind twice as fast as normal flies. "We were quite surprised - we thought we’d prove correct what scientists had assumed was happening, but instead we proved that long-held idea wrong," says Montell.

Remarkably, the earliest vision loss in normal flies was reversible for up to three days of light exposure, says Montell. But after three days, when the eyes’ electrical signals were halved, the eyes reached a point of no return and vision never fully recovered. This point should be longer for other animals, since fruitflies’ lifespan is only about 50 days.

The researchers are now searching for other proteins that reduce or prevent vision loss after exposure to constant light. They’re also studying how constant light causes irreversible destruction of rhodopsin.

Joanna Downer | EurekAlert!
Further information:
http://www.current-biology.com/
http://www.jhmi.edu

More articles from Life Sciences:

nachricht Cancer diagnosis: no more needles?
25.05.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Less is more? Gene switch for healthy aging found
25.05.2018 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>