Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Microbe’s genome reveals insights into ocean ecology

16.12.2004


Unexpected findings about the genetic makeup of a marine microbe have given scientists a new perspective on how bacteria make a living in the ocean – a view that may prove useful in wider studies of marine ecology.

By deciphering and analyzing the DNA sequence of Silicibacter pomeroyi, a member of an important group of marine bacteria, scientists found that the metabolic strategies of marine bacterioplankton are more diverse and less conventional than previously thought.

In one surprise, the study found that S. pomeroyi has the genetic tools to enable it to use inorganic compounds (such as inorganic sulfur) for energy, which allows the microbes to use organic carbon more efficiently in low-nutrient ocean environments.



Analysis of the genome sequence also showed that the microbe has adapted in ways that allow it to take advantage of so-called ocean "hot spots" – microscopic areas of the ocean that are rich in organic matter, typically related to living and dead microbial cells. The study, which appears in the December 16 issue of Nature, was led by scientists at the University of Georgia’s Department of Marine Sciences and at The Institute for Genomic Research (TIGR), along with several collaborators. The project was sponsored by the National Science Foundation.

S. pomeroyi – named for Lawrence Pomeroy, a UGA biologist who was a pioneer in the study of marine microbial ecology – is a member of an important group of marine microbes, the Roseobacter clade, found in both coastal and open oceans. Those bacteria account for an estimated 15 percent of the production of new microbial cells in the ocean.

The Nature paper’s first author, Mary Ann Moran, says the DNA sequence sheds new light on ecological strategies that sustain microbial life in the world’s oceans.

"This genome is especially significant for the new theories it will generate about the workings of the ocean," says Moran. "It provides new ideas and tools for investigating how microbes control carbon, sulfur, and nitrogen cycling on a global scale." The project was led by UGA’s Moran and by TIGR scientist Naomi Ward, who is the paper’s senior author. Other collaborators included: Ron Kiene of the University of South Alabama; Gary King of the University of Maine; Clay Fuqua of Indiana University; Robert Belas of the University of Maryland Biotechnology Institute’s Center of Marine Biotechnology; and José González of the University of La Laguna in Spain.

The S. pomeroyi genome offers the first real glimpse at the genetic material harbored by the Roseobacter group of bacteria, which have evolved metabolic strategies that allow them to flourish in marine environments. While scientists knew from laboratory studies that the microbe would metabolize sulfur, the genome sequence offered several surprises about how bacteria make a living in the ocean.

One unexpected finding from the genomic analysis was evidence of "lithoheterotrophy," the ability of marine bacteria that typically rely on organic carbon fixed by primary producers as their source of cell material to also use inorganic compounds (in this case, carbon monoxide and sulfur) for energy. In that way, the microbes can save more of the organic compounds for biosynthetic processes – allowing more efficient use of organic carbon in an environment that has little to go around.

"The microbe’s predicted ability to use such inorganic compounds was surprising," says Ward. "This study demonstrates how genome analysis allows us to propose new hypotheses of biological activity for a well-studied organism. We were able to test and confirm some of those hypotheses in the lab, providing more evidence for this lithohetrotropic strategy."

Another significant finding was that S. pomeroyi has numerous adaptations to living in association with ocean particles, so that it can take advantage of marine "hot spots," which feature rich areas of organic matter floating in an otherwise nutrient-poor ocean environment. The "hot spots" concept was first proposed more than a decade ago by Farooq Azam of the Scripps Institution of Oceanography.

Moran says the S. pomeroyi sequence "demonstrates that genomes of ecologically relevant cultured microbes have enormous potential to move marine biogeochemical research forward at a rapid pace, both by generating hypotheses about how the ocean works and by providing tools to investigate these hypotheses in the ocean."

Moran and colleagues at UGA along with Ward, John Heidelberg, and other scientists at TIGR headed up the project, including genome sequencing and annotation as well as experimental demonstration of properties suggested by the genome sequence. Three other groups joined the project after annotation began because of their expertise in specific genes:

Gary King of the University of Maine confirmed that the genes which appeared to encode carbon monoxide oxidation were functional and that they allow the organism to oxidize CO at concentrations relevant to ocean waters.

Clay Fuqua and associates at Indiana University confirmed that the two putative quorum sensing systems were functional by showing that the S. pomeroyi genes produce signaling compounds when moved into E. coli.

Bob Belas and associates at UMBI’s Center of Marine Biotechnology annotated the microbe’s motility genes.

Robert Koenig | EurekAlert!
Further information:
http://www.tigr.org

More articles from Life Sciences:

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

nachricht How herpesviruses win the footrace against the immune system
26.05.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>