Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Microbe’s genome reveals insights into ocean ecology

16.12.2004


Unexpected findings about the genetic makeup of a marine microbe have given scientists a new perspective on how bacteria make a living in the ocean – a view that may prove useful in wider studies of marine ecology.

By deciphering and analyzing the DNA sequence of Silicibacter pomeroyi, a member of an important group of marine bacteria, scientists found that the metabolic strategies of marine bacterioplankton are more diverse and less conventional than previously thought.

In one surprise, the study found that S. pomeroyi has the genetic tools to enable it to use inorganic compounds (such as inorganic sulfur) for energy, which allows the microbes to use organic carbon more efficiently in low-nutrient ocean environments.



Analysis of the genome sequence also showed that the microbe has adapted in ways that allow it to take advantage of so-called ocean "hot spots" – microscopic areas of the ocean that are rich in organic matter, typically related to living and dead microbial cells. The study, which appears in the December 16 issue of Nature, was led by scientists at the University of Georgia’s Department of Marine Sciences and at The Institute for Genomic Research (TIGR), along with several collaborators. The project was sponsored by the National Science Foundation.

S. pomeroyi – named for Lawrence Pomeroy, a UGA biologist who was a pioneer in the study of marine microbial ecology – is a member of an important group of marine microbes, the Roseobacter clade, found in both coastal and open oceans. Those bacteria account for an estimated 15 percent of the production of new microbial cells in the ocean.

The Nature paper’s first author, Mary Ann Moran, says the DNA sequence sheds new light on ecological strategies that sustain microbial life in the world’s oceans.

"This genome is especially significant for the new theories it will generate about the workings of the ocean," says Moran. "It provides new ideas and tools for investigating how microbes control carbon, sulfur, and nitrogen cycling on a global scale." The project was led by UGA’s Moran and by TIGR scientist Naomi Ward, who is the paper’s senior author. Other collaborators included: Ron Kiene of the University of South Alabama; Gary King of the University of Maine; Clay Fuqua of Indiana University; Robert Belas of the University of Maryland Biotechnology Institute’s Center of Marine Biotechnology; and José González of the University of La Laguna in Spain.

The S. pomeroyi genome offers the first real glimpse at the genetic material harbored by the Roseobacter group of bacteria, which have evolved metabolic strategies that allow them to flourish in marine environments. While scientists knew from laboratory studies that the microbe would metabolize sulfur, the genome sequence offered several surprises about how bacteria make a living in the ocean.

One unexpected finding from the genomic analysis was evidence of "lithoheterotrophy," the ability of marine bacteria that typically rely on organic carbon fixed by primary producers as their source of cell material to also use inorganic compounds (in this case, carbon monoxide and sulfur) for energy. In that way, the microbes can save more of the organic compounds for biosynthetic processes – allowing more efficient use of organic carbon in an environment that has little to go around.

"The microbe’s predicted ability to use such inorganic compounds was surprising," says Ward. "This study demonstrates how genome analysis allows us to propose new hypotheses of biological activity for a well-studied organism. We were able to test and confirm some of those hypotheses in the lab, providing more evidence for this lithohetrotropic strategy."

Another significant finding was that S. pomeroyi has numerous adaptations to living in association with ocean particles, so that it can take advantage of marine "hot spots," which feature rich areas of organic matter floating in an otherwise nutrient-poor ocean environment. The "hot spots" concept was first proposed more than a decade ago by Farooq Azam of the Scripps Institution of Oceanography.

Moran says the S. pomeroyi sequence "demonstrates that genomes of ecologically relevant cultured microbes have enormous potential to move marine biogeochemical research forward at a rapid pace, both by generating hypotheses about how the ocean works and by providing tools to investigate these hypotheses in the ocean."

Moran and colleagues at UGA along with Ward, John Heidelberg, and other scientists at TIGR headed up the project, including genome sequencing and annotation as well as experimental demonstration of properties suggested by the genome sequence. Three other groups joined the project after annotation began because of their expertise in specific genes:

Gary King of the University of Maine confirmed that the genes which appeared to encode carbon monoxide oxidation were functional and that they allow the organism to oxidize CO at concentrations relevant to ocean waters.

Clay Fuqua and associates at Indiana University confirmed that the two putative quorum sensing systems were functional by showing that the S. pomeroyi genes produce signaling compounds when moved into E. coli.

Bob Belas and associates at UMBI’s Center of Marine Biotechnology annotated the microbe’s motility genes.

Robert Koenig | EurekAlert!
Further information:
http://www.tigr.org

More articles from Life Sciences:

nachricht Warming ponds could accelerate climate change
21.02.2017 | University of Exeter

nachricht An alternative to opioids? Compound from marine snail is potent pain reliever
21.02.2017 | University of Utah

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>