Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCSB makes important advances in studies of retinal detachment

15.12.2004


Scientists at the University of California, Santa Barbara’s Neuroscience Research Institute are reporting significant advances in their studies of retinal detachment:

  • They have discovered that cellular changes that occur in the retinas of animals with retinal detachments also occur in humans. This implies that experimental therapies that reduce cellular damage in animals have a high likelihood of being successful in humans.
  • They have determined that oxygen therapy for retinal detachment, which they pioneered, can be highly successful in animals even when it is delayed, suggesting that it should be successful in humans as well.

In the January 2005 issue of Investigative Ophthalmology and Visual Science, the international team of scientists describes changes that occur in detached human retinas. In this study, Steven K. Fisher, professor of molecular, cellular and developmental biology, and Geoffrey P. Lewis, research scientist, headed the UCSB effort, collaborating with colleagues at the Moorfields Eye Hospital and the Institute of Ophthalmology at University College London.



Understanding the "glial" response is a key aspect of this study.

Glial cells are known as the "supporting cells" of the nervous system. The central nervous system (CNS) consists of both neurons and glial cells. Glial cells actually outnumber neurons in the CNS but their functions are poorly understood. It is known that glial cells surround neurons, hold them in place and supply nutrients to neurons. They insulate neurons from each other and also destroy and remove dead neurons.


The reaction of the glial cells to retinal detachment is critical to the success of surgery to correct retinal detachment. The glial response is part of an important medical condition called "proliferative vitreoretinopathy" (PVR). This condition is characterized by the growth of glial cells on the surface of the retina. In response to unknown stimuli, these cells begin to contract and can cause the retina to tear or re-detach. In humans, PVR is the most common cause of failure of retinal reattachment surgery. It occurs in five to 10 percent of all cases.

Essentially the glial cells form scar tissue in PVR. Scar tissue in one location causes the re-detachment of the retina, in another it blocks the regeneration of neurons and vision does not return. According to this and earlier studies, the data indicate that glial cell remodeling can play a clear role in the return of good vision following successful reattachment surgery. What has been a surprising new result in all of the recent studies is the extent of neuronal remodeling that occurs during the time the retina is detached.

"The structural remodeling of retinal neurons in animals following detachment has been assumed to alter synaptic connections between nerve cells and in doing so have an effect on visual outcome including reduced visual acuity or changes in color vision," said Lewis. Photoreceptors in the eyes are among the most highly metabolic cells in the body, using more energy than any others. Because of this, the UCSB researchers decided to test the use of extra oxygen to help maintain the cells after a retinal detachment. First reported by the UCSB researchers in 1999, the therapy has proved remarkably effective and is now being used by some ophthalmologists prior to surgery. Recently the UCSB team reported refinements of these results.

Normal room air has about 21 percent oxygen. In these first studies, the effects of oxygen were examined under "ideal" conditions. That is, oxygen therapy at 70 percent was begun immediately after creating a retinal detachment. However, these ideal conditions would not likely be encountered in a clinical situation because it would not be possible to administer oxygen to human patients immediately after a retinal detachment occurs.

Therefore, a new study was undertaken in which elevated oxygen was administered 24 hours after creating a detachment, thus more closely mimicking conditions commonly encountered in human patients. The results were published by the UCSB scientists in American Journal of Ophthalmology last summer. In this case, neuronal cell death and nerve cell remodeling was greatly reduced by comparison to the animals breathing normal room air, although the glial cell response was less affected than in the experiments with delivery of immediate elevated oxygen.

Assuming that it is desirable to reduce cell death and prevent the remodeling of nerve cells in detachment patients, the simple administration of elevated oxygen between the time of diagnosis and surgical repair may result in more rapid and improved recovery after reattachment surgery. Future research will include determining the effectiveness of this hyperoxia therapy when administered both before and after reattachment surgery, and methods for better inhibition of the undesirable cellular effects that lead to PVR.

This research has broad implications since the cell types involved (neurons and glia) are the same as those in the brain and spinal cord. The UCSB effort is one of a handful of research labs in the world that are studying retinal detachment in this way. The work at UCSB is unique in that the researchers have specialized using high resolution microscopy techniques to precisely map changes in protein expression and morphology in the cells.

Gail Gallessich | EurekAlert!
Further information:
http://www.ucsb.edu

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Taming 'wild' electrons in graphene

23.10.2017 | Physics and Astronomy

Mountain glaciers shrinking across the West

23.10.2017 | Earth Sciences

Scientists track ovarian cancers to site of origin: Fallopian tubes

23.10.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>