Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Alcohol vulnerability linked to action of insulin

15.12.2004


Drunken fruit flies have led to the discovery that insulin may determine susceptibility to alcohol. If confirmed in humans -- and the two species share about two-thirds of their genes -- the finding suggests a promising way to treat alcoholism using drugs that control insulin activity.



The finding by scientists at UCSF was published online Sunday (December 12) by Nature Neuroscience in advance of publication in the journal.

The UCSF researchers showed that when the normal function of insulin-like molecules in the brain of fruit flies is reduced, the intoxicating effect of alcohol increases. Earlier research has demonstrated that the flies and humans display many of the same vulnerabilities and behavioral responses to alcohol.


"This finding opens promising new avenues for the treatment of alcoholism," said Ulrike Heberlein, PhD, UCSF professor of anatomy and senior author on the paper. "Insulin is already known to act in the nervous system to regulate food intake, so it makes sense that it would influence the response to other substances the body senses as rewards, such as alcohol or drugs of abuse."

Insulin functions in the brains of animals from worms to mammals, and the pathway by which it influences behavior has been conserved throughout millions of years of evolution, Heberlein said, and research has recently revealed that insulin reduces the presence of the molecule that transports dopamine in the brain.

"In animals and humans, dopamine in the brain affects the response to both food and drugs. We are starting to see that in addition to its importance in sugar metabolism, insulin regulates release of neurotransmitters and may be crucial in determining the response to addictive drugs."

In her pioneering 10-year research effort to determine the genetic basis of alcohol-induced behavior, Heberlein has employed an apparatus she calls the inebriometer, in which normal flies and those with known mutations are placed at the top of a four-foot high column and exposed to ethanol. The genetic influence of alcohol sensitivity is measured by how quickly the different genetic types of flies lose their grip and fall to the bottom of the device.

Heberlein has observed that the flies’ behavior mimics many of the hallmarks of inebriated humans: heightened activity at first, then faltering coordination, followed by sluggish behavior, and, eventually, passing out if they are exposed to too much alcohol.

She and her colleagues showed earlier that a molecule in the body known as Protein Kinase A modulates sensitivity to alcohol. When its activity is inhibited, the amount of alcohol needed to cause inebriation decreases. The scientists had also examined different regions of the fly brain to determine where the Protein Kinase had its effect. In the new research they zeroed in on a small group of neurons in the brain, specifically cells producing so-called insulin-like peptides, or DILPs.

The scientists also tested flies with genetic defects in the brain receptors that docks with the insulin molecule to trigger the normal signaling function. They found that in all cases, the mutant flies showed increasing alcohol sensitivity, leaving little doubt that the insulin pathway normally functions to regulate the degree of alcohol intoxication.

The key part of the insulin signaling pathway that affects alcohol sensitivity could be the insulin molecule itself, its receptor or processes "upstream" or "downstream" of the insulin-receptor interaction, the scientists pointed out. Drugs already exist that could modify the signaling in the pathway and thereby modify the response to alcohol.

The scientists now want to study whether insulin acts in the brains of mice to affect the rewarding properties of abused drugs. If this turns out to be the case, it would make a compelling case for studying the potential connection between brain insulin and drug addiction in humans, Heberlein says.

Significantly for potential therapy against alcoholism, the increased alcohol sensitivity brought on by changes in brain insulin activity did not affect other behavior, suggesting that interfering with the brain insulin pathway may not pose any serious side effects.

Lead author on the paper is Ammon Corl, a PhD student in Heberlein’s lab. Aylin D. Rodan, MD and PhD, a former PhD student in the lab was a collaborator on the research and co-author on the paper.

Wallace Ravven | EurekAlert!
Further information:
http://www.ucsf.edu

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>