Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Alcohol vulnerability linked to action of insulin

15.12.2004


Drunken fruit flies have led to the discovery that insulin may determine susceptibility to alcohol. If confirmed in humans -- and the two species share about two-thirds of their genes -- the finding suggests a promising way to treat alcoholism using drugs that control insulin activity.



The finding by scientists at UCSF was published online Sunday (December 12) by Nature Neuroscience in advance of publication in the journal.

The UCSF researchers showed that when the normal function of insulin-like molecules in the brain of fruit flies is reduced, the intoxicating effect of alcohol increases. Earlier research has demonstrated that the flies and humans display many of the same vulnerabilities and behavioral responses to alcohol.


"This finding opens promising new avenues for the treatment of alcoholism," said Ulrike Heberlein, PhD, UCSF professor of anatomy and senior author on the paper. "Insulin is already known to act in the nervous system to regulate food intake, so it makes sense that it would influence the response to other substances the body senses as rewards, such as alcohol or drugs of abuse."

Insulin functions in the brains of animals from worms to mammals, and the pathway by which it influences behavior has been conserved throughout millions of years of evolution, Heberlein said, and research has recently revealed that insulin reduces the presence of the molecule that transports dopamine in the brain.

"In animals and humans, dopamine in the brain affects the response to both food and drugs. We are starting to see that in addition to its importance in sugar metabolism, insulin regulates release of neurotransmitters and may be crucial in determining the response to addictive drugs."

In her pioneering 10-year research effort to determine the genetic basis of alcohol-induced behavior, Heberlein has employed an apparatus she calls the inebriometer, in which normal flies and those with known mutations are placed at the top of a four-foot high column and exposed to ethanol. The genetic influence of alcohol sensitivity is measured by how quickly the different genetic types of flies lose their grip and fall to the bottom of the device.

Heberlein has observed that the flies’ behavior mimics many of the hallmarks of inebriated humans: heightened activity at first, then faltering coordination, followed by sluggish behavior, and, eventually, passing out if they are exposed to too much alcohol.

She and her colleagues showed earlier that a molecule in the body known as Protein Kinase A modulates sensitivity to alcohol. When its activity is inhibited, the amount of alcohol needed to cause inebriation decreases. The scientists had also examined different regions of the fly brain to determine where the Protein Kinase had its effect. In the new research they zeroed in on a small group of neurons in the brain, specifically cells producing so-called insulin-like peptides, or DILPs.

The scientists also tested flies with genetic defects in the brain receptors that docks with the insulin molecule to trigger the normal signaling function. They found that in all cases, the mutant flies showed increasing alcohol sensitivity, leaving little doubt that the insulin pathway normally functions to regulate the degree of alcohol intoxication.

The key part of the insulin signaling pathway that affects alcohol sensitivity could be the insulin molecule itself, its receptor or processes "upstream" or "downstream" of the insulin-receptor interaction, the scientists pointed out. Drugs already exist that could modify the signaling in the pathway and thereby modify the response to alcohol.

The scientists now want to study whether insulin acts in the brains of mice to affect the rewarding properties of abused drugs. If this turns out to be the case, it would make a compelling case for studying the potential connection between brain insulin and drug addiction in humans, Heberlein says.

Significantly for potential therapy against alcoholism, the increased alcohol sensitivity brought on by changes in brain insulin activity did not affect other behavior, suggesting that interfering with the brain insulin pathway may not pose any serious side effects.

Lead author on the paper is Ammon Corl, a PhD student in Heberlein’s lab. Aylin D. Rodan, MD and PhD, a former PhD student in the lab was a collaborator on the research and co-author on the paper.

Wallace Ravven | EurekAlert!
Further information:
http://www.ucsf.edu

More articles from Life Sciences:

nachricht Toward a 'smart' patch that automatically delivers insulin when needed
18.01.2017 | American Chemical Society

nachricht 127 at one blow...
18.01.2017 | Stiftung Zoologisches Forschungsmuseum Alexander Koenig, Leibniz-Institut für Biodiversität der Tiere

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>