Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Alcohol vulnerability linked to action of insulin

15.12.2004


Drunken fruit flies have led to the discovery that insulin may determine susceptibility to alcohol. If confirmed in humans -- and the two species share about two-thirds of their genes -- the finding suggests a promising way to treat alcoholism using drugs that control insulin activity.



The finding by scientists at UCSF was published online Sunday (December 12) by Nature Neuroscience in advance of publication in the journal.

The UCSF researchers showed that when the normal function of insulin-like molecules in the brain of fruit flies is reduced, the intoxicating effect of alcohol increases. Earlier research has demonstrated that the flies and humans display many of the same vulnerabilities and behavioral responses to alcohol.


"This finding opens promising new avenues for the treatment of alcoholism," said Ulrike Heberlein, PhD, UCSF professor of anatomy and senior author on the paper. "Insulin is already known to act in the nervous system to regulate food intake, so it makes sense that it would influence the response to other substances the body senses as rewards, such as alcohol or drugs of abuse."

Insulin functions in the brains of animals from worms to mammals, and the pathway by which it influences behavior has been conserved throughout millions of years of evolution, Heberlein said, and research has recently revealed that insulin reduces the presence of the molecule that transports dopamine in the brain.

"In animals and humans, dopamine in the brain affects the response to both food and drugs. We are starting to see that in addition to its importance in sugar metabolism, insulin regulates release of neurotransmitters and may be crucial in determining the response to addictive drugs."

In her pioneering 10-year research effort to determine the genetic basis of alcohol-induced behavior, Heberlein has employed an apparatus she calls the inebriometer, in which normal flies and those with known mutations are placed at the top of a four-foot high column and exposed to ethanol. The genetic influence of alcohol sensitivity is measured by how quickly the different genetic types of flies lose their grip and fall to the bottom of the device.

Heberlein has observed that the flies’ behavior mimics many of the hallmarks of inebriated humans: heightened activity at first, then faltering coordination, followed by sluggish behavior, and, eventually, passing out if they are exposed to too much alcohol.

She and her colleagues showed earlier that a molecule in the body known as Protein Kinase A modulates sensitivity to alcohol. When its activity is inhibited, the amount of alcohol needed to cause inebriation decreases. The scientists had also examined different regions of the fly brain to determine where the Protein Kinase had its effect. In the new research they zeroed in on a small group of neurons in the brain, specifically cells producing so-called insulin-like peptides, or DILPs.

The scientists also tested flies with genetic defects in the brain receptors that docks with the insulin molecule to trigger the normal signaling function. They found that in all cases, the mutant flies showed increasing alcohol sensitivity, leaving little doubt that the insulin pathway normally functions to regulate the degree of alcohol intoxication.

The key part of the insulin signaling pathway that affects alcohol sensitivity could be the insulin molecule itself, its receptor or processes "upstream" or "downstream" of the insulin-receptor interaction, the scientists pointed out. Drugs already exist that could modify the signaling in the pathway and thereby modify the response to alcohol.

The scientists now want to study whether insulin acts in the brains of mice to affect the rewarding properties of abused drugs. If this turns out to be the case, it would make a compelling case for studying the potential connection between brain insulin and drug addiction in humans, Heberlein says.

Significantly for potential therapy against alcoholism, the increased alcohol sensitivity brought on by changes in brain insulin activity did not affect other behavior, suggesting that interfering with the brain insulin pathway may not pose any serious side effects.

Lead author on the paper is Ammon Corl, a PhD student in Heberlein’s lab. Aylin D. Rodan, MD and PhD, a former PhD student in the lab was a collaborator on the research and co-author on the paper.

Wallace Ravven | EurekAlert!
Further information:
http://www.ucsf.edu

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>