Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Vitamin E in plant seeds could halt prostate, lung cancer

15.12.2004


The form of vitamin E found in many plant seeds – but not in most manufactured nutritional supplements – might halt the growth of prostate and lung cancer cells, according to a Purdue University study.



A team led by Qing Jiang (pronounced "ching zhang") has found that gamma-tocopherol, which occurs naturally in walnuts, pecans, sesame seeds, and in corn and sesame oils, inhibits the proliferation of lab-cultured human prostate and lung cancer cells. The vitamin’s presence interrupts the synthesis of certain fatty molecules called sphingolipids, important components of cell membranes. However, the gamma-tocopherol leaves healthy human prostate cells unaffected, which could give it value as an anticancer agent.

"This is the first time gamma-tocopherol has been shown to induce death in lab-grown human cancer cells while leaving healthy cells alone," said Jiang, who is an assistant professor of foods and nutrition in the College of Consumer and Family Sciences. "This could be wonderful news for cancer patients if the effect can be reproduced in animal models. But because most nutritional supplements contain only alpha-tocopherol, a different form of vitamin E that alone does not have these anticancer properties, it may be better to supplement the diet with mixed forms of vitamin E. The study shows that the anticancer effect is enhanced when mixed forms are used."


Jiang’s research appears in the current (week of Dec. 13) online edition of the scientific journal Proceedings of the National Academy of Sciences. She co-authored the paper with Jeffrey Wong, Henrik Fyrst, Julie D. Saba and Bruce N. Ames of the Children’s Hospital Oakland Research Institute in Oakland, Calif.

Scientists have been studying vitamin E for more than three-quarters of a century, but most efforts have focused largely on alpha-tocopherol, one of eight known forms in the vitamin’s family. Alpha-tocopherol was found early on to have the most beneficial effects on laboratory animals fed diets deficient in vitamin E, and also is the major form found in body tissues. For these reasons, it has been nearly the only form of the vitamin to be included in most manufactured nutritional supplements.

"Since then, alpha-tocopherol has justifiably earned a good reputation as an antioxidant, which helps to fight against damage caused by unwanted free radicals," Jiang said. "But its familiarity has perhaps attracted research away from the other seven forms of vitamin E, and since gamma-tocopherol is the vitamin’s most commonly occurring natural form in the American diet, I grew interested in it a few years ago."

In 2000 another study by Jiang and colleagues found that gamma-tocopherol inhibits inflammation, which had already been implicated in cancer development. They theorized that it might retard the progress of cancer and cardiovascular disease, and to test their hypothesis they exposed cultures of cancerous prostate and lung cells to the vitamin. Normal prostate epithelial cells were used as a control group.

"We discovered that as we increased the quantity of gamma-tocopherol, the cancer cells grew more slowly," Jiang said. "But the normal prostate cells were not affected and grew normally. This could indicate that the vitamin could be used to target lung and prostate cancer cells without the damaging side effects of chemotherapy."

The study also revealed that gamma-tocopherol caused cell death by interrupting sphingolipid synthesis.

"This is also a novel discovery," Jiang said. "Although there have been prior indications that some form of vitamin E may cause cell death in some mouse cell lines, we are the first to provide a mechanism for such an effect."

Gamma-tocopherol, though rarely available in vitamin pills, is nevertheless found in abundance in the typical American diet. Many nuts are rich in it, including walnuts and pecans, as are cooking oils such as corn and sesame oil.

Though Jiang said she would be cautious about using food sources to slow prostate or lung cancer’s progress in humans, she said that high-risk groups such as older men could benefit from supplementation – if carried out with prudence.

"Foods rich in gamma-tocopherol are also rich in fats, and some products bring other hazards as well," she said. "Corn oil, for example, is rich in linolic acid, which has been shown to promote certain types of cancer in some studies. But sesame seeds and pecans seem to be good all-around choices."

Jiang said the next step for her research team would be testing the effect of gamma-tocopherol and mixed forms of vitamin E on animal cancers.

"Although this discovery is promising, we do not yet know whether gamma-tocopherol has any effect on cancer in living creatures," she said. "We hope that future research not only will clarify whether gamma-tocopherol could have applications in human cancer treatment, but also will show how we might supplement the body with the vitamin to prevent cancer from developing in the first place. These questions will continue to direct our work."

This research was funded in part by the National Institutes of Health.

Chad Boutin | EurekAlert!
Further information:
http://www.purdue.edu

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>