Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Success of experimental herpes vaccine builds momentum for human clinical trials

15.12.2004


A new study provides evidence that a herpes vaccine developed by a Harvard Medical School researcher is a strong candidate for testing in humans. The study, published online Dec. 14 in the Journal of Virology, compared three different experimental vaccines for herpes simplex virus 2 (HSV-2), the virus that causes most cases of genital herpes.



HSV-2 infects one in five Americans, and its prevalence has reached 50 percent in some developing countries, where it also seems to be helping to fuel the spread of HIV. HSV-2 infection, though incurable, typically does not cause major health problems, but can be life-threatening in immunocompromised people and newborn babies infected by their mothers.

Lead author Stephen E. Straus, MD, senior investigator in the Medical Virology Section in the Laboratory of Clinical Infectious Diseases at the National Institute of Allergy and Infectious Diseases of the National Institutes of Health, tested the vaccines in two established animal models of herpes infection. The HMS vaccine, developed by David Knipe, HMS professor of microbiology and molecular genetics, called dl5-29, outperformed the other two vaccines, one of which has already been tested in humans.


Straus said that the results argue strongly for taking dl5-29 into human trials. "Based upon d15-29’s biological and immunological properties, it appears to be the most compelling new vaccine candidate for genital herpes," he said.

Straus said that dl5-29 seemed especially promising because it solves a critical problem that is believed to underlie the failure of previous candidate vaccines. The dominant approach to herpes vaccine development over the past 20 years has been the delivery of one or two pure glycoproteins found in the outer envelope of the virus in order to induce an antibody response. But in trials of HSV-2 vaccines, a healthy antibody response has not seemed sufficient to protect against infection. One version of the herpes glycoprotein vaccine failed to protect research subjects from HSV-2 infection, while a second version of the glycoprotein vaccine failed to protect men, but showed a protective effect only in the subset of women who also had not been infected previously with HSV-1, the common cause of cold sores.

In contrast, dl5-29 is a live, mutant strain of HSV-2 that is missing two of the genes necessary for it to replicate and persist inside its host. "The proteins that are expressed are able to induce immune responses but the virus can’t spread," said Knipe, who is a coauthor on the paper. Normally, HSV-2 infects the cells lining genital areas, but makes its way into nearby sensory neurons, where it persists in a latent state. Because dl5-29 actually enters host cells and expresses many of its proteins within them, it not only elicits a broad spectrum of antibodies but also stimulates T cells, which directly attack infected host cells and release cytokines that further strengthen the immune response. The clinical trials of previous herpes vaccines suggested that T cells as well as antibodies must be activated to launch an effective defense.

Straus compared dl5-29 with a glycoprotein vaccine previously tested in humans and a third vaccine comprising a naked circular strand of DNA encoding the glycoprotein. Naked DNA vaccines have generated interest in recent years for their potential to elicit a stronger cellular immune response than by simply injecting the protein. Straus said that he tested dl5-29 against "the best tested standard vaccine plus the competing new concept in the field, DNA vaccines," in order to get a better sense of how well the dl 5-29 vaccine performed. His team tested the vaccines both in mice and in guinea pigs. The latter is the best model of human HSV-2 disease because it is the only one that mimics many of the aspects of the human disease, such as a recurring infection interspersed with periods of latency. The researchers studied how well the vaccines worked prophylactically-to prevent infection-and therapeutically to help control an existing infection.

Straus and his colleagues at the NIH found that in all measures dl5-29 performed as well or better than the other two candidates. It was as effective as the glycoprotein vaccine in preventing acute and recurrent disease in guinea pigs. Moreover, when given therapeutically to previously infected guinea pigs, dl5-29 reduced the rate of recurrent infections slightly better than the other candidates. A key finding was that dl5-29 also induced a substantially stronger T cell response than either of the two other vaccines.

Additionally, dl5-29 stimulated stronger antibody responses in animals than either of the other vaccines. Straus and Knipe said this result was surprising because it was thought that the large quantities of a single glycoprotein, as used in many recent human trials, was enough to stimulate sufficient levels of antibodies. Knipe said that as a live virus, dl5-29 produces many more viral proteins, and perhaps the resulting broader antibody response is important in preventing infection.

Because many other candidate vaccines have prevented infection in animals but failed in humans, the results do not guarantee success. But Straus observed that the stronger T cell response provides a major theoretical advantage for dl5-29 that could translate into greater clinical effectiveness in people. "The vaccine induced very good levels of immunity of the antibody type. It induced far better levels of immunity of the cellular type. It was enormously safe, and didn’t seem to persist in the animals," said Straus. "With dl5-29, we believe there are now sufficient data to justify clinical studies."

John Lacey | EurekAlert!
Further information:
http://www.hms.harvard.edu

More articles from Life Sciences:

nachricht Modern genetic sequencing tools give clearer picture of how corals are related
17.08.2017 | University of Washington

nachricht The irresistible fragrance of dying vinegar flies
16.08.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Gold shines through properties of nano biosensors

17.08.2017 | Physics and Astronomy

Greenland ice flow likely to speed up: New data assert glaciers move over sediment, which gets more slippery as it gets wetter

17.08.2017 | Earth Sciences

Mars 2020 mission to use smart methods to seek signs of past life

17.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>