Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New pathway identified in angiogenesis

15.12.2004


Scientists have discovered a new biological pathway that may be useful in regulating angiogenesis, the process the body uses to build new blood vessels. The findings, published in the December issue of the journal Immunity, may offer clinicians a new way to intervene in a broad range of diseases and disorders, including cancer, heart and lung disease, wound healing and transplantation.



Angiogenesis is a normal function in the body, but it’s not always helpful. For example, while it is critical to normal embryonic development and beneficial in wound healing and recovery from heart disease, it can be harmful when it creates new feeder lines that help cancerous tumors grow and spread.

Investigators in The Ohio State University Davis Heart and Lung Research Institute say angiogenesis appears to be manageable by stimulating monocytes – certain white blood cells in the immune system – with high doses of a naturally occurring growth factor in the body called GM-CSF (granulocyte-macrophage colony stimulating factor).


GM-CSF stimulates monocytes to produce soluble receptors for VEGF (vascular endothelial growth factor), the substance tumors secrete to signal nearby blood vessels to build connectors to them.

“When tumors reach a certain size, they need more oxygen and nutrients to continue to grow. New blood vessels play an important role in tumor metastases, and it is the tumor’s production of VEGF that is the key driver of new blood vessel formation,” says Clay Marsh, director of the division of pulmonary, critical care and sleep medicine in the department of internal medicine at Ohio State and senior author of the study. But he says that soluble VEGF receptors produced by the stimulated monocytes act like sponges, soaking up all of the available VEGF, so the signal to build new blood vessels never gets through. “In essence, we think we have found a new way to block angiogenesis,” says Marsh.

The approach takes advantage of a well-known principle of immunity: When a tumor or inflammation occurs, the body alerts monocytes and macrophages (other infection-fighting white blood cells) to rush to the site to contain it. “We are taking advantage of the fact that the monocytes are already in place. We just give them additional growth factor to boost the production of soluble VEGF receptors to block angiogenesis.”

Earlier pieces of the pathway have been identified and described, but this is the first time it has been conceptualized as a process that could be utilized to actually manipulate angiogenesis, says Marsh. Marsh, working with Tim Eubank, a post-doctoral fellow in his laboratory, conducted initial studies stimulating monocytes with GM-CSF in a test tube, measuring the impact of the soluble VEGF receptors on endothelial cell tube formation, the first step in new blood vessel growth.

Ryan Roberts, an MD/PhD student, later assisted the team in performing similar studies in mice. They implanted the mice with Matrigel plugs, tiny bits of mouse tissue engineered to mimic a tumor, then added VEGF and GM-CSF to them.

In both sets of studies they found that the stimulated monocytes produced enough soluble VEGF receptors to inhibit angiogenesis.

The research team says their next step will be to test the process in mice with mammary tumors. They plan on injecting the mice with GM-CSF at the tumor site, a therapeutic strategy that would maximize the effects of the growth factor, but keep it localized at the same time. “Our findings are especially intriguing because GM-CSF is naturally produced by the body. We use a lot more of it than what might be normally present at a tumor site, but it appears to be safe and well tolerated in the animals we’ve studied,” says Marsh.

The findings come at a time when new methods to thwart angiogenesis are sorely needed. So far, the small handful of drugs and targeted therapies engineered to block the process have had only limited success. Additional investigators from Ohio State who worked on the study include Michelle Galloway, Yijie Wang and David Cohn.

The project was supported by grants from the National Institutes of Health, the American Lung Association Johnie Walker Murphy Career Investigator Award and the Kelly Clark Memorial Fund.

Michelle Gailiun | EurekAlert!
Further information:
http://www.osu.edu

More articles from Life Sciences:

nachricht Flavins keep a handy helper in their pocket
25.04.2018 | University of Freiburg

nachricht Complete skin regeneration system of fish unraveled
24.04.2018 | Tokyo Institute of Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Getting electrons to move in a semiconductor

25.04.2018 | Physics and Astronomy

Reconstructing what makes us tick

25.04.2018 | Physics and Astronomy

Cheap 3-D printer can produce self-folding materials

25.04.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>