Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New pathway identified in angiogenesis

15.12.2004


Scientists have discovered a new biological pathway that may be useful in regulating angiogenesis, the process the body uses to build new blood vessels. The findings, published in the December issue of the journal Immunity, may offer clinicians a new way to intervene in a broad range of diseases and disorders, including cancer, heart and lung disease, wound healing and transplantation.



Angiogenesis is a normal function in the body, but it’s not always helpful. For example, while it is critical to normal embryonic development and beneficial in wound healing and recovery from heart disease, it can be harmful when it creates new feeder lines that help cancerous tumors grow and spread.

Investigators in The Ohio State University Davis Heart and Lung Research Institute say angiogenesis appears to be manageable by stimulating monocytes – certain white blood cells in the immune system – with high doses of a naturally occurring growth factor in the body called GM-CSF (granulocyte-macrophage colony stimulating factor).


GM-CSF stimulates monocytes to produce soluble receptors for VEGF (vascular endothelial growth factor), the substance tumors secrete to signal nearby blood vessels to build connectors to them.

“When tumors reach a certain size, they need more oxygen and nutrients to continue to grow. New blood vessels play an important role in tumor metastases, and it is the tumor’s production of VEGF that is the key driver of new blood vessel formation,” says Clay Marsh, director of the division of pulmonary, critical care and sleep medicine in the department of internal medicine at Ohio State and senior author of the study. But he says that soluble VEGF receptors produced by the stimulated monocytes act like sponges, soaking up all of the available VEGF, so the signal to build new blood vessels never gets through. “In essence, we think we have found a new way to block angiogenesis,” says Marsh.

The approach takes advantage of a well-known principle of immunity: When a tumor or inflammation occurs, the body alerts monocytes and macrophages (other infection-fighting white blood cells) to rush to the site to contain it. “We are taking advantage of the fact that the monocytes are already in place. We just give them additional growth factor to boost the production of soluble VEGF receptors to block angiogenesis.”

Earlier pieces of the pathway have been identified and described, but this is the first time it has been conceptualized as a process that could be utilized to actually manipulate angiogenesis, says Marsh. Marsh, working with Tim Eubank, a post-doctoral fellow in his laboratory, conducted initial studies stimulating monocytes with GM-CSF in a test tube, measuring the impact of the soluble VEGF receptors on endothelial cell tube formation, the first step in new blood vessel growth.

Ryan Roberts, an MD/PhD student, later assisted the team in performing similar studies in mice. They implanted the mice with Matrigel plugs, tiny bits of mouse tissue engineered to mimic a tumor, then added VEGF and GM-CSF to them.

In both sets of studies they found that the stimulated monocytes produced enough soluble VEGF receptors to inhibit angiogenesis.

The research team says their next step will be to test the process in mice with mammary tumors. They plan on injecting the mice with GM-CSF at the tumor site, a therapeutic strategy that would maximize the effects of the growth factor, but keep it localized at the same time. “Our findings are especially intriguing because GM-CSF is naturally produced by the body. We use a lot more of it than what might be normally present at a tumor site, but it appears to be safe and well tolerated in the animals we’ve studied,” says Marsh.

The findings come at a time when new methods to thwart angiogenesis are sorely needed. So far, the small handful of drugs and targeted therapies engineered to block the process have had only limited success. Additional investigators from Ohio State who worked on the study include Michelle Galloway, Yijie Wang and David Cohn.

The project was supported by grants from the National Institutes of Health, the American Lung Association Johnie Walker Murphy Career Investigator Award and the Kelly Clark Memorial Fund.

Michelle Gailiun | EurekAlert!
Further information:
http://www.osu.edu

More articles from Life Sciences:

nachricht Maelstroms in the heart
22.02.2018 | Max-Planck-Institut für Dynamik und Selbstorganisation

nachricht Decoding the structure of the huntingtin protein
22.02.2018 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Decoding the structure of the huntingtin protein

22.02.2018 | Life Sciences

Camera technology in vehicles: Low-latency image data compression

22.02.2018 | Information Technology

Minimising risks of transplants

22.02.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>