Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New pathway identified in angiogenesis

15.12.2004


Scientists have discovered a new biological pathway that may be useful in regulating angiogenesis, the process the body uses to build new blood vessels. The findings, published in the December issue of the journal Immunity, may offer clinicians a new way to intervene in a broad range of diseases and disorders, including cancer, heart and lung disease, wound healing and transplantation.



Angiogenesis is a normal function in the body, but it’s not always helpful. For example, while it is critical to normal embryonic development and beneficial in wound healing and recovery from heart disease, it can be harmful when it creates new feeder lines that help cancerous tumors grow and spread.

Investigators in The Ohio State University Davis Heart and Lung Research Institute say angiogenesis appears to be manageable by stimulating monocytes – certain white blood cells in the immune system – with high doses of a naturally occurring growth factor in the body called GM-CSF (granulocyte-macrophage colony stimulating factor).


GM-CSF stimulates monocytes to produce soluble receptors for VEGF (vascular endothelial growth factor), the substance tumors secrete to signal nearby blood vessels to build connectors to them.

“When tumors reach a certain size, they need more oxygen and nutrients to continue to grow. New blood vessels play an important role in tumor metastases, and it is the tumor’s production of VEGF that is the key driver of new blood vessel formation,” says Clay Marsh, director of the division of pulmonary, critical care and sleep medicine in the department of internal medicine at Ohio State and senior author of the study. But he says that soluble VEGF receptors produced by the stimulated monocytes act like sponges, soaking up all of the available VEGF, so the signal to build new blood vessels never gets through. “In essence, we think we have found a new way to block angiogenesis,” says Marsh.

The approach takes advantage of a well-known principle of immunity: When a tumor or inflammation occurs, the body alerts monocytes and macrophages (other infection-fighting white blood cells) to rush to the site to contain it. “We are taking advantage of the fact that the monocytes are already in place. We just give them additional growth factor to boost the production of soluble VEGF receptors to block angiogenesis.”

Earlier pieces of the pathway have been identified and described, but this is the first time it has been conceptualized as a process that could be utilized to actually manipulate angiogenesis, says Marsh. Marsh, working with Tim Eubank, a post-doctoral fellow in his laboratory, conducted initial studies stimulating monocytes with GM-CSF in a test tube, measuring the impact of the soluble VEGF receptors on endothelial cell tube formation, the first step in new blood vessel growth.

Ryan Roberts, an MD/PhD student, later assisted the team in performing similar studies in mice. They implanted the mice with Matrigel plugs, tiny bits of mouse tissue engineered to mimic a tumor, then added VEGF and GM-CSF to them.

In both sets of studies they found that the stimulated monocytes produced enough soluble VEGF receptors to inhibit angiogenesis.

The research team says their next step will be to test the process in mice with mammary tumors. They plan on injecting the mice with GM-CSF at the tumor site, a therapeutic strategy that would maximize the effects of the growth factor, but keep it localized at the same time. “Our findings are especially intriguing because GM-CSF is naturally produced by the body. We use a lot more of it than what might be normally present at a tumor site, but it appears to be safe and well tolerated in the animals we’ve studied,” says Marsh.

The findings come at a time when new methods to thwart angiogenesis are sorely needed. So far, the small handful of drugs and targeted therapies engineered to block the process have had only limited success. Additional investigators from Ohio State who worked on the study include Michelle Galloway, Yijie Wang and David Cohn.

The project was supported by grants from the National Institutes of Health, the American Lung Association Johnie Walker Murphy Career Investigator Award and the Kelly Clark Memorial Fund.

Michelle Gailiun | EurekAlert!
Further information:
http://www.osu.edu

More articles from Life Sciences:

nachricht Fingerprint' technique spots frog populations at risk from pollution
27.03.2017 | Lancaster University

nachricht Parallel computation provides deeper insight into brain function
27.03.2017 | Okinawa Institute of Science and Technology (OIST) Graduate University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>