Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers control chemical reactions one molecule at a time

14.12.2004


UCR researchers’ findings advance techniques toward development of nanoscale electronics



Scientists at the University of California, Riverside showed that L. P. Hammett’s 1937 prediction of the strength of different acids is directly transferable to the activation of individual molecules on metal surfaces using the tip of a scanning tunneling microscope (STM) as a nanoscale actuator.

Hammett’s original prediction is a cornerstone of physical organic chemistry, which laid the foundation for many quantitative structure activity relationships that are now widely used in fields such as drug design and environmental toxicology.


Ludwig Bartels, an assistant professor of chemistry at UCR, used an STM to demonstrate that Hammett’s concepts still hold true at a scale where molecules are individually guided one at a time and step-by-step through a chemical reaction.

An STM acquires the height profile of a surface at the atomic scale by guiding a needle across the surface in a process similar to how a blind person reads Braille. The dots it can resolve are no larger than individual atoms or molecules. Thus, it enables scientists to see images of individual atoms and molecules on metal and semiconductor surfaces. The same needle tip used for scanning can inject tailored electrical pulses into molecules that render portions of them reactive by modifying their chemical make up.

Bartels led a team of researchers whose findings are published in this week’s issue of the Proceedings of the National Academies of Science in a paper titled Measurement of a Linear Free Energy Relationship One Molecule at a Time. Co-authors with Bartels are UCR graduate student Ki-Young Kwon, who performed the data analysis and interpretation, as well as UCR postdoctoral researchers Bommisetty Rao, who performed the bulk of the experiments, and Anwei Liu, who developed the Scanning Tunneling Microscope used for the experiments.

In detail, Bartels and his team found that identical electrical pulses activate the thiol group of benzenethiol molecules more or less readily depending on the nature and the position of substituents (such as bromine atoms or methyl moieties) on their benzene ring.

The activity of thiol groups is used to anchor molecules to metal electrodes in virtually all molecular electronics schemes proposed so far. The benzenethiols used in Bartels’ study comprise a good model system for molecules used in molecular electronics and these findings may support future nanoscale assembly of "molectronic" devices - using molecular systems in electronics instead of silicon.

In 2000, researchers - including UCR’s Bartels - found that the STM can assemble individual biphenyl molecules from elementary building blocks (iodobenzene) by a sequence of activation of the building blocks and transfer of the activated blocks to close proximity so that they can bind to one another chemically. But because scientists lacked control of the activation of potential building blocks, little progress has been made toward the assembly of larger and more useful molecules.

The new technique now shows how scientists can fine-tune the reactivity of groups of molecules. "Ultimately, this may guide us how we can modify the linking groups in our starting molecules so that we can activate them separately, which will then allow us to activate one group, attach another molecule and, after that is accomplished, activate another group, so that we can attach a third molecule, and so on...," Bartels said.

The new finding offers a route to the design of building blocks whose reactivity is tailored to optimize the atomic-scale construction of complex and functional molecules on surfaces.

Ricardo Duran | EurekAlert!
Further information:
http://www.ucr.edu

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>