Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers control chemical reactions one molecule at a time

14.12.2004


UCR researchers’ findings advance techniques toward development of nanoscale electronics



Scientists at the University of California, Riverside showed that L. P. Hammett’s 1937 prediction of the strength of different acids is directly transferable to the activation of individual molecules on metal surfaces using the tip of a scanning tunneling microscope (STM) as a nanoscale actuator.

Hammett’s original prediction is a cornerstone of physical organic chemistry, which laid the foundation for many quantitative structure activity relationships that are now widely used in fields such as drug design and environmental toxicology.


Ludwig Bartels, an assistant professor of chemistry at UCR, used an STM to demonstrate that Hammett’s concepts still hold true at a scale where molecules are individually guided one at a time and step-by-step through a chemical reaction.

An STM acquires the height profile of a surface at the atomic scale by guiding a needle across the surface in a process similar to how a blind person reads Braille. The dots it can resolve are no larger than individual atoms or molecules. Thus, it enables scientists to see images of individual atoms and molecules on metal and semiconductor surfaces. The same needle tip used for scanning can inject tailored electrical pulses into molecules that render portions of them reactive by modifying their chemical make up.

Bartels led a team of researchers whose findings are published in this week’s issue of the Proceedings of the National Academies of Science in a paper titled Measurement of a Linear Free Energy Relationship One Molecule at a Time. Co-authors with Bartels are UCR graduate student Ki-Young Kwon, who performed the data analysis and interpretation, as well as UCR postdoctoral researchers Bommisetty Rao, who performed the bulk of the experiments, and Anwei Liu, who developed the Scanning Tunneling Microscope used for the experiments.

In detail, Bartels and his team found that identical electrical pulses activate the thiol group of benzenethiol molecules more or less readily depending on the nature and the position of substituents (such as bromine atoms or methyl moieties) on their benzene ring.

The activity of thiol groups is used to anchor molecules to metal electrodes in virtually all molecular electronics schemes proposed so far. The benzenethiols used in Bartels’ study comprise a good model system for molecules used in molecular electronics and these findings may support future nanoscale assembly of "molectronic" devices - using molecular systems in electronics instead of silicon.

In 2000, researchers - including UCR’s Bartels - found that the STM can assemble individual biphenyl molecules from elementary building blocks (iodobenzene) by a sequence of activation of the building blocks and transfer of the activated blocks to close proximity so that they can bind to one another chemically. But because scientists lacked control of the activation of potential building blocks, little progress has been made toward the assembly of larger and more useful molecules.

The new technique now shows how scientists can fine-tune the reactivity of groups of molecules. "Ultimately, this may guide us how we can modify the linking groups in our starting molecules so that we can activate them separately, which will then allow us to activate one group, attach another molecule and, after that is accomplished, activate another group, so that we can attach a third molecule, and so on...," Bartels said.

The new finding offers a route to the design of building blocks whose reactivity is tailored to optimize the atomic-scale construction of complex and functional molecules on surfaces.

Ricardo Duran | EurekAlert!
Further information:
http://www.ucr.edu

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>