Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene vaccine for Alzheimer’s disease shows promising results

14.12.2004


UT Southwestern Medical Center at Dallas researchers have found a way of stimulating the immune systems of mice to fight against amyloid proteins that cause the devastating plaques that are characteristic of Alzheimer’s disease.



For years scientists have examined the possibility of using a protein-based vaccine to slow the progression of the disease in its early stages. UT Southwestern researchers have created a gene-based vaccine aimed at stimulating the immune systems of mice to potentially fight off plaque-causing amyloid protein in the brain.

Their findings appear in today’s issue of the Archives of Neurology.


"Previous Alzheimer’s vaccines were protein-based," said Dr. Baoxi Qu, the study’s lead author and assistant professor in the Center for Biomedical Inventions and internal medicine. "We wanted to try a DNA-based genetic vaccine instead to see if we could enhance the immune response."

Although prior studies of amyloid protein vaccination had shown some slowing in the plaque buildup, negative side effects also occurred in a handful of patients. Some had autoimmune responses that caused encephalitis.

The key in the UT Southwestern study was finding another way to vaccinate patients without stimulating the body’s own immune cytotoxic T cells, said Dr. Roger Rosenberg, a study author and director of the Alzheimer’s Disease Center. "This dilemma was discussed with my colleagues, and we decided to try vaccination with an amyloid gene, rather than the amyloid protein vaccine," said Dr. Rosenberg.

The UT Southwestern researchers vaccinated mice with a "gene gun." The gene gun and gene-vaccination technologies were invented by Dr. Stephen Albert Johnston, director of the Center for Biomedical Inventions and senior author of the latest study. "We have been developing ways to use gene-immunization to manipulate the immune response," Dr. Johnston said. "This study was the first step to see if we can apply these techniques to create a safe and effective Alzheimer’s vaccine." Said Dr. Rosenberg: "When we vaccinated the mice with the mouse form of the amyloid gene, they made lots of antibodies without stimulating cytotoxic T cells. When we get to human studies, we hope to show that humans can make human antibodies against the amyloid as well."

Current treatments for Alzheimer’s disease focus on the symptoms since no therapies have been clinically proven to slow or prevent progression of the disease. Amyloid protein deposits are present in the early phase of the disease – a fact that suggests a gene vaccination would be a step forward in slowing the progression of dementia.

From the mouse studies and in previous clinical trials of patients with Alzheimer’s disease, immunization with amyloids slowed the buildup of plaque on the brain and appeared to slow cognitive loss. "Although human clinical trials are still at least two years out, theoretically, we are on the right track," he said.

Other UT Southwestern authors involved in the study were Dr. Liping Li, a research fellow in the Center for Biomedical Inventions; and Dr. Philip Boyer, assistant professor of pathology.

Katherine Morales | EurekAlert!
Further information:
http://www.utsouthwestern.edu

More articles from Life Sciences:

nachricht Unique genome architectures after fertilisation in single-cell embryos
30.03.2017 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>