Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene vaccine for Alzheimer’s disease shows promising results

14.12.2004


UT Southwestern Medical Center at Dallas researchers have found a way of stimulating the immune systems of mice to fight against amyloid proteins that cause the devastating plaques that are characteristic of Alzheimer’s disease.



For years scientists have examined the possibility of using a protein-based vaccine to slow the progression of the disease in its early stages. UT Southwestern researchers have created a gene-based vaccine aimed at stimulating the immune systems of mice to potentially fight off plaque-causing amyloid protein in the brain.

Their findings appear in today’s issue of the Archives of Neurology.


"Previous Alzheimer’s vaccines were protein-based," said Dr. Baoxi Qu, the study’s lead author and assistant professor in the Center for Biomedical Inventions and internal medicine. "We wanted to try a DNA-based genetic vaccine instead to see if we could enhance the immune response."

Although prior studies of amyloid protein vaccination had shown some slowing in the plaque buildup, negative side effects also occurred in a handful of patients. Some had autoimmune responses that caused encephalitis.

The key in the UT Southwestern study was finding another way to vaccinate patients without stimulating the body’s own immune cytotoxic T cells, said Dr. Roger Rosenberg, a study author and director of the Alzheimer’s Disease Center. "This dilemma was discussed with my colleagues, and we decided to try vaccination with an amyloid gene, rather than the amyloid protein vaccine," said Dr. Rosenberg.

The UT Southwestern researchers vaccinated mice with a "gene gun." The gene gun and gene-vaccination technologies were invented by Dr. Stephen Albert Johnston, director of the Center for Biomedical Inventions and senior author of the latest study. "We have been developing ways to use gene-immunization to manipulate the immune response," Dr. Johnston said. "This study was the first step to see if we can apply these techniques to create a safe and effective Alzheimer’s vaccine." Said Dr. Rosenberg: "When we vaccinated the mice with the mouse form of the amyloid gene, they made lots of antibodies without stimulating cytotoxic T cells. When we get to human studies, we hope to show that humans can make human antibodies against the amyloid as well."

Current treatments for Alzheimer’s disease focus on the symptoms since no therapies have been clinically proven to slow or prevent progression of the disease. Amyloid protein deposits are present in the early phase of the disease – a fact that suggests a gene vaccination would be a step forward in slowing the progression of dementia.

From the mouse studies and in previous clinical trials of patients with Alzheimer’s disease, immunization with amyloids slowed the buildup of plaque on the brain and appeared to slow cognitive loss. "Although human clinical trials are still at least two years out, theoretically, we are on the right track," he said.

Other UT Southwestern authors involved in the study were Dr. Liping Li, a research fellow in the Center for Biomedical Inventions; and Dr. Philip Boyer, assistant professor of pathology.

Katherine Morales | EurekAlert!
Further information:
http://www.utsouthwestern.edu

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>