Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Carbon nanotubes yield a new class of biological sensors

14.12.2004


Nanotechnology researchers at the University of Illinois in Urbana-Champaign have demonstrated a tiny, implantable detector that could one day allow diabetics to monitor their glucose levels continuously-without ever having to draw a blood sample.



The work, which is the first application of a whole new class of biological sensors, was funded by the National Science Foundation (NSF) and announced December 12 in the online edition of the journal Nature Materials.

Principal investigator Michael Strano, a professor of chemical and biomolecular engineering at Illinois, explains that the new sensors are based on single-walled carbon nanotubes: cylindrical molecules whose sides are formed from a lattice of carbon atoms. The idea is to exploit the nanotubes’ ability to fluoresce, or glow, when illuminated by certain wavelengths of infrared light-"a region of the spectrum where human tissue and biological fluids are particularly transparent," says Strano.


To make a sensor, Strano and his collaborators first coat the nanotubes with a "molecular sheath": a one-molecule-thick layer of compounds that react strongly with a particular chemical-in this case, glucose. The mix of compounds is chosen so that the reaction also changes the nanotubes’ fluorescent response. Then the researchers load the coated nanotubes into a needle-thin capillary tube that can safely be implanted into the body. The capillary keeps the nanotubes from directly touching living cells but still allows glucose to enter.

The Illinois researchers tested their glucose sensor by inserting it into a human tissue sample. Then they illuminated the sample with an infrared laser and verified that the strength of the fluorescence from the buried sensor was directly related to the glucose concentrations in the tissue.

Mitchell Waldrop | EurekAlert!
Further information:
http://www.nsf.gov

More articles from Life Sciences:

nachricht Designer cells: artificial enzyme can activate a gene switch
22.05.2018 | Universität Basel

nachricht Flow of cerebrospinal fluid regulates neural stem cell division
22.05.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Matabele ants: Travelling faster with detours

22.05.2018 | Life Sciences

Flow of cerebrospinal fluid regulates neural stem cell division

22.05.2018 | Life Sciences

Chemists at FAU successfully demonstrate imine hydrogenation with inexpensive main group metal

22.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>