Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Carbon nanotubes yield a new class of biological sensors


Nanotechnology researchers at the University of Illinois in Urbana-Champaign have demonstrated a tiny, implantable detector that could one day allow diabetics to monitor their glucose levels continuously-without ever having to draw a blood sample.

The work, which is the first application of a whole new class of biological sensors, was funded by the National Science Foundation (NSF) and announced December 12 in the online edition of the journal Nature Materials.

Principal investigator Michael Strano, a professor of chemical and biomolecular engineering at Illinois, explains that the new sensors are based on single-walled carbon nanotubes: cylindrical molecules whose sides are formed from a lattice of carbon atoms. The idea is to exploit the nanotubes’ ability to fluoresce, or glow, when illuminated by certain wavelengths of infrared light-"a region of the spectrum where human tissue and biological fluids are particularly transparent," says Strano.

To make a sensor, Strano and his collaborators first coat the nanotubes with a "molecular sheath": a one-molecule-thick layer of compounds that react strongly with a particular chemical-in this case, glucose. The mix of compounds is chosen so that the reaction also changes the nanotubes’ fluorescent response. Then the researchers load the coated nanotubes into a needle-thin capillary tube that can safely be implanted into the body. The capillary keeps the nanotubes from directly touching living cells but still allows glucose to enter.

The Illinois researchers tested their glucose sensor by inserting it into a human tissue sample. Then they illuminated the sample with an infrared laser and verified that the strength of the fluorescence from the buried sensor was directly related to the glucose concentrations in the tissue.

Mitchell Waldrop | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>