Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

DNA breaks and genomic instability: Broken ends stick together

14.12.2004


The authors of two studies this week report findings that offer new insight into how breaks in chromosomes can lead to the so-called genomic instability that is a hallmark of cancer. When DNA is damaged, as it routinely is during the life of cells, the damage must be properly repaired in order to keep chromosomes intact. Failure of the DNA repair process disrupts the structural stability of chromosomes, which must be intact in order to be properly segregated to daughter cells when cells divide. Non-repaired or improperly fused chromosomes lead to chromosome breaks in mitosis and disruptions in gene activity that can lead to cancer. Unfortunately, the molecular events following DNA repair failure that lead to this genomic instability are only partly understood.



In the first study, researchers led by David Toczyski at UCSF and James Haber at Brandeis University fluorescently marked chromosomes at, or near, DNA breaks, and showed that the broken ends of yeast chromosomes remain held together even as cells attempt to separate them during cell division.

Normally, a single DNA break causes cells to arrest in metaphase of mitosis. Metaphase is a critical transition in the cell cycle because it is after this stage that chromosomes segregate to daughter cells. In their study, Toczyski and colleagues examined broken chromosomes both during the cells’ arrest in metaphase and after cells had overridden this arrest and attempted to segregate the broken chromosome. The researchers found that when both sister chromatids of a chromosome are cut -- a so-called double-strand break -- the two halves of a single broken sister chromatid often remain associated with each other through a mechanism involving DNA repair proteins; they also found evidence that the two sister chromatid fragments on one side of a chromosome break remain inappropriately associated during mitosis, leading to missegregation of the corresponding genetic material.


In a related paper, researchers employed special imaging techniques to visualize, in living cells, broken DNA ends after a double-strand break. The researchers, led by Kerry Bloom of the University of North Carolina, Chapel Hill, and Michael Resnick of the NIH, showed that the chromosome ends corresponding the DNA break remain associated with each other, but that this association was dependent on the molecular DNA repair machinery: When a particulary important complex of repair proteins, termed the MRX complex, is disrupted, the ends of a broken chromosome often disperse away from one another. This dispersion indicates that part of the function of the DNA repair machinery after a double-strand break is to help DNA ends resist the pulling forces of the mitotic spindle. This keeps the broken ends together as the DNA is repaired and leads to proper chromosome segregation in mitosis.

Heidi Hardman | EurekAlert!
Further information:
http://www.cell.com

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>