Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Brain imaging reveals new language circuits

14.12.2004


The language network of the brain seemed simpler in the past. One brain area was recognized to be critical for the production of language, another for its comprehension. A dense bundle of nerve fibers connected the two.



But there have always been naysayers who pointed to evidence that failed to fit this tidy picture. Now a study employing a powerful variant of magnetic resonance imaging (MRI) confirms these suspicions. The study will be published December 13, 2004 in the online edition of Annals of Neurology. "We were surprised that the two classical language areas were densely connected to a third area, whose presence had already been suspected but whose connections with the classical network were unknown," said lead author Marco Catani, M.D., of the Institute of Psychiatry at King’s College London.

The authors dubbed this language area "Geschwind’s territory" in honor of the American neurologist Norman Geschwind who championed its linguistic significance decades ago.


Language is generated and understood in the cortex, the outermost covering of the brain. Paul Broca and Carl Wernicke, 19th Century neurologists, noted that damage to specific cortical areas, which came to bear their names, produced primarily language production or language processing disorders, but not both. A large bundle of nerve fibers was found to connect Broca’s and Wernicke’s areas, and damage to this pathway also produced language disorders, or aphasias.

However, even in the 19th Century, there were bits of evidence that other brain areas play some role in language, though these have remained enigmatic, as scientists could not use animal models to probe language networks in the same way they could visual or movement networks in the brain. In the last few decades, advanced brain imaging techniques such as CT, PET, and more recently, MRI have allowed scientists to begin studying these areas in living humans.

Standard MRI, by itself a powerful innovation, shows the major tissue structures of the brain. A variant called "functional" MRI even allows researchers to identify which areas are being used during different tasks, including producing and comprehending language. Diffusion tensor (DT) MRI has gained prominence in the past decade because it reveals in greater detail the nerve fiber connections through which different brain regions form communication networks.

With DT-MRI, Catani and his colleagues found a separate, roundabout route that connects Broca’s and Wernicke’s areas via a region in the parietal lobe of the cortex, which Geschwind had pointed out as an important language region already in the 1960s.

"There are clues that the parallel pathway network we found is important for the acquisition of language in childhood," said Catani. "Geschwind’s territory is the last area in the brain to mature, the completion of its maturation coinciding with the development of reading and writing skills. An important future line of study will be to examine the maturation of this area and its connections in the context of autism and dyslexia."

The fact that these pathways appear to exist – in more rudimentary forms – in the brains of monkeys may also have bearing on the search for the evolutionary origins of language. "These data suggest that language evolved, in part, from changes in pre-existing networks, not through the appearance of new brain structures," said Catani. "This method provides another example of the remarkable versatility of MRI technology," said Marsel Mesulam, M.D., of Northwestern University in Chicago, Illinois, whose editorial will accompany the print publication of the article.

"It is theoretically possible to combine diffusion tensor imaging with functional MRI so as to reveal the connectivity of brain areas with identified specializations," said Mesulam. "This method can be applied anywhere in the brain. Revealing the connections of the human brain will constitute the next frontier in the field of cognitive neurology."

David Greenberg | EurekAlert!
Further information:
http://www.interscience.wiley.com/journal/ana
http://www.wiley.com

More articles from Life Sciences:

nachricht CRISPR meets single-cell sequencing in new screening method
19.01.2017 | CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften

nachricht Toward a 'smart' patch that automatically delivers insulin when needed
18.01.2017 | American Chemical Society

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

The Great Unknown: Risk-Taking Behavior in Adolescents

19.01.2017 | Studies and Analyses

Magnetic moment of a single antiproton determined with greatest precision ever

19.01.2017 | Physics and Astronomy

CRISPR meets single-cell sequencing in new screening method

19.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>