Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Brain imaging reveals new language circuits


The language network of the brain seemed simpler in the past. One brain area was recognized to be critical for the production of language, another for its comprehension. A dense bundle of nerve fibers connected the two.

But there have always been naysayers who pointed to evidence that failed to fit this tidy picture. Now a study employing a powerful variant of magnetic resonance imaging (MRI) confirms these suspicions. The study will be published December 13, 2004 in the online edition of Annals of Neurology. "We were surprised that the two classical language areas were densely connected to a third area, whose presence had already been suspected but whose connections with the classical network were unknown," said lead author Marco Catani, M.D., of the Institute of Psychiatry at King’s College London.

The authors dubbed this language area "Geschwind’s territory" in honor of the American neurologist Norman Geschwind who championed its linguistic significance decades ago.

Language is generated and understood in the cortex, the outermost covering of the brain. Paul Broca and Carl Wernicke, 19th Century neurologists, noted that damage to specific cortical areas, which came to bear their names, produced primarily language production or language processing disorders, but not both. A large bundle of nerve fibers was found to connect Broca’s and Wernicke’s areas, and damage to this pathway also produced language disorders, or aphasias.

However, even in the 19th Century, there were bits of evidence that other brain areas play some role in language, though these have remained enigmatic, as scientists could not use animal models to probe language networks in the same way they could visual or movement networks in the brain. In the last few decades, advanced brain imaging techniques such as CT, PET, and more recently, MRI have allowed scientists to begin studying these areas in living humans.

Standard MRI, by itself a powerful innovation, shows the major tissue structures of the brain. A variant called "functional" MRI even allows researchers to identify which areas are being used during different tasks, including producing and comprehending language. Diffusion tensor (DT) MRI has gained prominence in the past decade because it reveals in greater detail the nerve fiber connections through which different brain regions form communication networks.

With DT-MRI, Catani and his colleagues found a separate, roundabout route that connects Broca’s and Wernicke’s areas via a region in the parietal lobe of the cortex, which Geschwind had pointed out as an important language region already in the 1960s.

"There are clues that the parallel pathway network we found is important for the acquisition of language in childhood," said Catani. "Geschwind’s territory is the last area in the brain to mature, the completion of its maturation coinciding with the development of reading and writing skills. An important future line of study will be to examine the maturation of this area and its connections in the context of autism and dyslexia."

The fact that these pathways appear to exist – in more rudimentary forms – in the brains of monkeys may also have bearing on the search for the evolutionary origins of language. "These data suggest that language evolved, in part, from changes in pre-existing networks, not through the appearance of new brain structures," said Catani. "This method provides another example of the remarkable versatility of MRI technology," said Marsel Mesulam, M.D., of Northwestern University in Chicago, Illinois, whose editorial will accompany the print publication of the article.

"It is theoretically possible to combine diffusion tensor imaging with functional MRI so as to reveal the connectivity of brain areas with identified specializations," said Mesulam. "This method can be applied anywhere in the brain. Revealing the connections of the human brain will constitute the next frontier in the field of cognitive neurology."

David Greenberg | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>