Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists solve the mystery of how Botox attacks nerves and eliminates wrinkles

13.12.2004


Every year, millions of people try to look younger by taking injections of Botox, a prescription drug that gets rid of facial wrinkles by temporarily paralyzing muscles in the forehead. Although best known as a cosmetic procedure, Botox injections also have been approved by the Food and Drug Administration (FDA) to treat uncontrolled blinking (blepharospasm), lazy eye (strabismus), involuntary muscle contractions in the neck (cervical dystonia) and acute underarm sweating (severe primary axillary hyperhidrosis).



Botox users might be surprised to learn that they’re actually receiving minute injections of a bacterial neurotoxin called botulinum, one of the most poisonous substances known. Exposure to large amounts of botulinum bacteria can cause a paralytic, sometimes-fatal disease called botulism. Last month, several Floridians were hospitalized with botulism after receiving injections of an anti-wrinkle treatment that authorities suspect was a cheap, non-FDA-approved imitation of Botox.

The botulinum toxin works by invading nerve cells, where it releases an enzyme that prevents muscle contraction. In recent years, scientists have determined that the enzyme binds to specific sites on proteins called SNAREs, which form a complex in the synapse between nerve and muscle cells. Without SNAREs, nerves cannot release the chemical signals that tell muscle cells to contract, and paralysis results. "The botulinum enzyme selectively attacks one of the SNARE proteins and cuts it into two pieces," said Stanford University Professor Axel T. Brunger. "That’s sufficient to disrupt its function. But the means by which the enzyme identifies and cleaves its target SNARE has been a subject of much speculation."


Now, Brunger and Stanford graduate student Mark A. Breidenbach have solved part of the puzzle. Their results, which will be published in the Dec. 12 online edition of the journal Nature, could help researchers develop alternative treatments for botulism and perhaps find new medical applications for Botox and other neurotoxins.

Clever machinery

There are seven forms of botulinum neurotoxin produced by seven different strains of the Clostridium botulinum bacterium, explained Brunger, a Howard Hughes Medical Institute investigator who holds professorships in three Stanford departments-molecular and cellular physiology, neurology and neurological sciences, and the Stanford Synchrotron Radiation Laboratory (SSRL). "The seven botulinum neurotoxins cut SNARE proteins at different sites along the surface," he said. "Why that is, we really don’t know exactly."

For the Nature study, the researchers focused on one of the seven forms, botulinum serotype A, which is the active ingredient in Botox. Breidenbach, lead author of the study, spent months in Brunger’s lab trying to crystallize a SNARE/botulinum A complex for laboratory analysis. Unfortunately, the botulinum A samples usually ended up slicing the SNARE target in two, rendering it useless. "The trick that Mark found was to introduce two specific mutations in the botulinum enzyme that would inhibit its function, but not to the degree that it would affect its structure," Brunger said. "These two mutations prevented it from cutting, so we could observe how it interacted with an intact SNARE."

The SNARE/botulinum A crystals were then taken to SSRL and the Lawrence Berkeley National Laboratories, where their structures were determined using a technique called x-ray crystallography. The results, published in Nature, reveal a complicated, three-dimensional maze of twisted proteins that look like gift-wrapping ribbons gone awry. "What we’ve shown is that part of the targeted SNARE protein literally wraps itself around the botulinum A enzyme, using a large portion of the enzyme’s surface for specific interactions," Brunger noted. "That’s the novel finding in our study."

It turned out that the SNARE protein was actually bound to more than two-dozen sites on the enzyme. "Such an extensive interface between a neurotoxin and its target is unheard of," Brunger said. "What botulinum A has accomplished with this large interaction area is a high degree of specificity with just a single unit. Often in biology such specificity is accomplished by having large complexes of auxiliary proteins working together, but these bacteria use a very simple mechanism-in this case, a single protein. It’s an extremely clever machinery."

New applications

Brunger hopes to determine the structures of other botulinum enzymes, along with a closely related neurotoxin that causes tetanus, another serious muscular disorder that affects hundreds of thousands of people worldwide every year. "Perhaps one could develop drugs that would treat botulism and tetanus by competing with specific binding sites on the surface of the neurotoxin,’’ he said. ’’The idea is that you could inject people with a compound that would have an immediate effect."

Further research also could open the door to novel medical applications, Brunger added. For example, recent experiments have shown that Botox may be useful for treating ringing in the ears (tinnitus), urinary incontinence and excess scarring that occurs when a wound heals. "This whole field is very young and evolving, and the picture we have so far is incomplete," he concluded.

Mark Shwartz | EurekAlert!
Further information:
http://www.stanford.edu

More articles from Life Sciences:

nachricht Newly designed molecule binds nitrogen
23.02.2018 | Julius-Maximilians-Universität Würzburg

nachricht Atomic Design by Water
23.02.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>