Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists solve the mystery of how Botox attacks nerves and eliminates wrinkles

13.12.2004


Every year, millions of people try to look younger by taking injections of Botox, a prescription drug that gets rid of facial wrinkles by temporarily paralyzing muscles in the forehead. Although best known as a cosmetic procedure, Botox injections also have been approved by the Food and Drug Administration (FDA) to treat uncontrolled blinking (blepharospasm), lazy eye (strabismus), involuntary muscle contractions in the neck (cervical dystonia) and acute underarm sweating (severe primary axillary hyperhidrosis).



Botox users might be surprised to learn that they’re actually receiving minute injections of a bacterial neurotoxin called botulinum, one of the most poisonous substances known. Exposure to large amounts of botulinum bacteria can cause a paralytic, sometimes-fatal disease called botulism. Last month, several Floridians were hospitalized with botulism after receiving injections of an anti-wrinkle treatment that authorities suspect was a cheap, non-FDA-approved imitation of Botox.

The botulinum toxin works by invading nerve cells, where it releases an enzyme that prevents muscle contraction. In recent years, scientists have determined that the enzyme binds to specific sites on proteins called SNAREs, which form a complex in the synapse between nerve and muscle cells. Without SNAREs, nerves cannot release the chemical signals that tell muscle cells to contract, and paralysis results. "The botulinum enzyme selectively attacks one of the SNARE proteins and cuts it into two pieces," said Stanford University Professor Axel T. Brunger. "That’s sufficient to disrupt its function. But the means by which the enzyme identifies and cleaves its target SNARE has been a subject of much speculation."


Now, Brunger and Stanford graduate student Mark A. Breidenbach have solved part of the puzzle. Their results, which will be published in the Dec. 12 online edition of the journal Nature, could help researchers develop alternative treatments for botulism and perhaps find new medical applications for Botox and other neurotoxins.

Clever machinery

There are seven forms of botulinum neurotoxin produced by seven different strains of the Clostridium botulinum bacterium, explained Brunger, a Howard Hughes Medical Institute investigator who holds professorships in three Stanford departments-molecular and cellular physiology, neurology and neurological sciences, and the Stanford Synchrotron Radiation Laboratory (SSRL). "The seven botulinum neurotoxins cut SNARE proteins at different sites along the surface," he said. "Why that is, we really don’t know exactly."

For the Nature study, the researchers focused on one of the seven forms, botulinum serotype A, which is the active ingredient in Botox. Breidenbach, lead author of the study, spent months in Brunger’s lab trying to crystallize a SNARE/botulinum A complex for laboratory analysis. Unfortunately, the botulinum A samples usually ended up slicing the SNARE target in two, rendering it useless. "The trick that Mark found was to introduce two specific mutations in the botulinum enzyme that would inhibit its function, but not to the degree that it would affect its structure," Brunger said. "These two mutations prevented it from cutting, so we could observe how it interacted with an intact SNARE."

The SNARE/botulinum A crystals were then taken to SSRL and the Lawrence Berkeley National Laboratories, where their structures were determined using a technique called x-ray crystallography. The results, published in Nature, reveal a complicated, three-dimensional maze of twisted proteins that look like gift-wrapping ribbons gone awry. "What we’ve shown is that part of the targeted SNARE protein literally wraps itself around the botulinum A enzyme, using a large portion of the enzyme’s surface for specific interactions," Brunger noted. "That’s the novel finding in our study."

It turned out that the SNARE protein was actually bound to more than two-dozen sites on the enzyme. "Such an extensive interface between a neurotoxin and its target is unheard of," Brunger said. "What botulinum A has accomplished with this large interaction area is a high degree of specificity with just a single unit. Often in biology such specificity is accomplished by having large complexes of auxiliary proteins working together, but these bacteria use a very simple mechanism-in this case, a single protein. It’s an extremely clever machinery."

New applications

Brunger hopes to determine the structures of other botulinum enzymes, along with a closely related neurotoxin that causes tetanus, another serious muscular disorder that affects hundreds of thousands of people worldwide every year. "Perhaps one could develop drugs that would treat botulism and tetanus by competing with specific binding sites on the surface of the neurotoxin,’’ he said. ’’The idea is that you could inject people with a compound that would have an immediate effect."

Further research also could open the door to novel medical applications, Brunger added. For example, recent experiments have shown that Botox may be useful for treating ringing in the ears (tinnitus), urinary incontinence and excess scarring that occurs when a wound heals. "This whole field is very young and evolving, and the picture we have so far is incomplete," he concluded.

Mark Shwartz | EurekAlert!
Further information:
http://www.stanford.edu

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>