Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nanotubes glow, even within biological cells

13.12.2004


Scientists use fluorescence to track ultrafine particles taken up by white blood cells

In some of the first work documenting the uptake of carbon nanotubes by living cells, a team of chemists and life scientists from Rice University, the University of Texas Health Science Center at Houston and the Texas Heart Institute have selectively detected low concentrations of nanotubes in laboratory cell cultures.

The research appears in the Dec. 8 issue of the Journal of the American Chemical Society. It suggests that the white blood cells, which were incubated in dilute solutions of nanotubes, treated the nanotubes as they would other extracellular particles – actively ingesting them and sealing them off inside chambers known as phagosomes. "Our goal in doing the experiment was both to learn how the biological function of the cells was affected by the nanotubes and to see if the fluorescent properties of the nanotubes would change inside a living cell," said lead researcher Bruce Weisman, professor of chemistry at Rice. "On the first point, we found no adverse effects on the cells, and on the second, we found that the nanotubes retained their unique optical properties, which allowed us to use a specialized microscope tuned to the near-infrared to pinpoint their locations within the cells."



The research builds upon Weisman’s groundbreaking 2002 discovery that each of the dozens of varieties of semiconducting, single-walled carbon nanotubes (SWNTs) emits its own unique fluorescent signature. The new findings suggest that SWNTs might be valuable biological imaging agents, in part because SWNTs fluoresce in the near-infrared portion of the spectrum, at wavelengths not normally emitted by biological tissues. This may allow light from even a handful of nanotubes to be selectively detected from within the body.

Carbon nanotubes are cylinders of carbon atoms that measure about one nanometer, or one-billionth of a meter, in diameter. They are larger than a molecule of water, but are about 10,000 times smaller than a white blood cell. The latest tests bode well on two counts. Not only did the nanotubes retain their optical signatures after entering the white blood cells, but the introduction of nanotubes caused no measurable change in cell properties like shape, rate of growth or the ability to adhere to surfaces.

In conducting the tests, Weisman was joined by colleagues Paul Cherukuri and Silvio Litovsky, both of the University of Texas Health Science Center at Houston and the Texas Heart Institute, and Sergei Bachilo of Rice. The researchers cultured mouse macrophage cells in solutions containing between zero and 7 parts-per-million carbon nanotubes for periods of up to 96 hours. They found that the amount of carbon nanotubes taken up by the cells increased smoothly as the concentration or the time of exposure increased. In addition, some cultures were run at cooler temperatures and showed a slower rate of uptake, a finding that suggested that the nanotubes were being ingested through normal phagocytosis.

The samples were studied using a spectrofluorometer and a fluorescence microscope that was modified for near-IR imaging through the addition of a digital camera containing indium gallium arsenide detector elements.

Although long term studies on toxicity and biodistributions must be completed before nanotubes can be used in medical tests, the new findings indicate nanotubes could soon be useful as imaging markers in laboratory in vitro studies, particularly in cases where the bleaching, toxicity and degradation of more traditional markers are problematic.

Jade Boyd | EurekAlert!
Further information:
http://www.rice.edu

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>