Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Neural crest stem cells in skin could provide alternative to embryonic stem cell use


Cell replacement therapy offers a novel and powerful medical technology. A type of embryonic stem cell, called a neural crest stem cell, that persists into adulthood in hair follicles was recently discovered by Maya Sieber-Blum, Ph.D., of the Medical College of Wisconsin, Milos Grim, MD Ph.D., of Charles University Prague, and their collaborators.

The discovery – reported recently in Developmental Dynamics, a journal of the American Association of Anatomists published by John Wiley & Sons, Inc. – may in many instances provide a non-controversial substitute for embryonic stem cells. Embryonic stem cells are unique, because they can differentiate into any cell type of the body. Their use, however, raises ethical concerns because embryos are being destroyed in the process. In contrast, neural crest stem cells from adults have several advantages: similar to embryonic stem cells, they have the innate ability to differentiate into many diverse cell types; they are easily accessible in the skin of adults; and the patient’s own neural crest stem cells could be used for cell therapy. The latter avoids both rejection of the implant and graft-versus-host disease.

Studies in the mouse showed that neural crest stem cells from adult hair follicles are able to differentiate into neurons, nerve supporting cells, cartilage/bone cells, smooth muscle cells, and pigment cells. Preliminary data indicate that equivalent stem cells reside in human hair follicles.

"The goal of our research is to apply neural crest stem cells from adult hair follicles in cell replacement therapy in selected instances," Sieber-Blum says. This may include, spinal cord injury, Parkinson’s disease, multiple sclerosis, Hirschsprung’s disease, peripheral neuropathies, certain defects of the heart, and bone degeneration. Though promising, this research is still in the animal testing stage. Additional research is required before it could benefit patients.

David Greenberg | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Sweetening neurotransmitter receptors and other neuronal proteins
28.10.2016 | Max-Planck-Institut für Hirnforschung

nachricht A new look at thyroid diseases
28.10.2016 | Jacobs University Bremen gGmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>