Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genetic defect confers risk of major depression, resistance to SSRI drug therapy

10.12.2004


A newly discovered genetic defect might represent an important risk factor for major depression, a condition which effects 20 million people in the U.S., according to Duke University Medical Center researchers. The mutation in the gene -- whose protein product plays a primary role in synthesizing the brain chemical serotonin -- could lead to the first diagnostic test for genetic predisposition to depression, the team said.



"Abnormalities in brain levels of serotonin have been widely suspected as a key contributor to major depression and other neuropsychiatric disorders," said James B. Duke professor Marc Caron, Ph.D., a researcher in the department of cell biology, the Duke Institute for Genome Sciences and Policy and senior author of the study. "Our findings provide a novel molecular mechanism underlying dysfunction in serotonin neurotransmission in some patients with depression."

The genetic defect is the first genetic variant of functional consequence in the production of serotonin identified in any psychiatric disorder, the researchers said. Patients with depression who carry the abnormal gene also show resistance to treatment with selective serotonin reuptake inhibitors (SSRIs), a class of drugs that includes paroxetine (PaxilTM), sertraline (ZoloftTM), and fluoxetine (ProzacTM), the team found. In addition to its diagnostic use, the genetic marker might therefore also aid in identifying, in advance, those patients who will likely fail to respond well to SSRI therapy.


The researchers further suggest that this and other variants of the gene might also explain such paradoxical adverse reactions to SSRI treatment as suicidal behavior and SSRI-exacerbated mania and psychosis. The Duke team reported its findings Dec. 9, 2004, in the early online edition of Neuron. The work was supported by the National Institutes of Health, the Human Frontiers Science Program and the Canadian Institute of Health Research.

The brain is a network of billions of cells called neurons. When stimulated, neurons fire, sending a wave of electrical signals from one end to the other. One neuron will trigger an impulse in others by launching bursts of chemical neurotransmitters, including serotonin, that set off an impulse in receiving neurons. Once the original cell has passed its message on, it sops up the chemical it released to dampen that signal and prepare for the next.

If serotonin levels are decreased, communication among neurons stalls. Such decrease may occur in patients with depression and other psychiatric disorders including anxiety, post-traumatic stress disorder and attention deficit hyperactivity disorder. SSRIs counteract the depletion by slowing the re-uptake of serotonin, allowing the body to make the best use of abnormally low levels of the chemical messenger, the researchers explained.

Scientists had long considered the enzyme known as tryptophan hydroxylase (TPH1) to be the sole enzyme governing serotonin synthesis in the nervous system. Last year, however, researchers at another institution found that a second enzyme, tryptophan hydroxylase-2 (TPH2), is present in the brain, while the earlier discovered TPH1 is found primarily in peripheral nerves. Caron’s team reported earlier this year that different variants of that enzyme have a major effect on brain levels of serotonin in mice, suggesting that the human variant of the gene might underlie psychiatric disorders characterized by low levels of the chemical messenger.

To search for variants of TPH2, researchers screened the genomes of 48 individuals included in another Duke study of psychosocial and behavioral risk. Among these samples, the researchers uncovered one novel variant of the gene that generates a mutant TPH2 enzyme. The team then inserted both versions of TPH2 into cell cultures. Cells expressing the mutant TPH2 enzyme produced approximately 80 percent less serotonin than did cells with the more common form of the brain enzyme, they found.

The researchers then searched for the gene in 87 patients with unipolar major depression, 60 patients with bipolar disorder, and 219 control patients not diagnosed with either condition. Of those individuals, more than 10 percent (nine of 87 individuals) of those with major depression carried the abnormal serotonin synthesis gene, compared to one percent (three of 219 individuals) of those in the control group. None of the patients with bipolar disorder were found to have the mutant gene.

Seven of the patients with depression who carried the defective gene also had a family history of mental illness or drug and alcohol abuse, six had exhibited suicidal behavior or had made a suicide attempt and four had generalized anxiety symptoms. Furthermore, all of the patients with the mutant gene were either unresponsive to treatment with SSRIs or only responded to the drugs when prescribed at the highest doses.

The three control patients with the mutant gene, who had not been diagnosed with major depression, did display clinical symptoms, including generalized anxiety, mild depression and a family history of mental illness or drug and alcohol abuse -- further suggesting a higher susceptibility for certain neuropsychiatric disorders in the presence of the abnormal gene variant. "The current study identifies a functional genetic variant, which leads to a major decline in the production of serotonin and which may be an important risk factor for major depression," said Duke researcher Xiaodong Zhang, Ph.D., lead author of the study. "The findings provide a potential molecular mechanism for aberrations in the production of serotonin that underlie depression and other neuropsychiatric disorders."

"We believe this is a major finding with implications not only for understanding the cause and development of depression, but also its treatment and management," added R. Ranga Krishnan, chairman of psychiatry at Duke and an investigator on the study. "Depression can seriously impact a person’s functioning, both at work and with their family, and can lead to suicidal thoughts and actions, making more effective diagnosis and treatments a high priority."

Further large-scale genetic studies are needed to confirm the findings and investigate in detail the connection between the mutant TPH2 and unipolar major depression, the researchers said. The team will also explore the presence of this and other functional mutations in the serotonin enzyme in people with a wide range of other serotonin-related conditions -- such as generalized anxiety disorders, suicidal behavior, autism and drug abuse -- and in those with adverse reactions to treatment with SSRIs.

Collaborators on the study include Raul Gainetdinov, Jean-Martin Beaulieu, Tatyana Sotnikova, Lauranell Burch, Redford Williams and David Schwartz, all of Duke.

Kendall Morgan | EurekAlert!
Further information:
http://www.duke.edu

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>