Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tiny aircraft just eat and go

10.12.2004


Aircraft the size of bees that get the energy they need by feeding themselves a diet of dead flies could be buzzing around the battlefields and motorways of the future, thanks to research in southwest England.

The aircraft, up to 15cm long and equipped with sensors and cameras, could have a number of uses in civilian life and modern warfare, including reconnaissance missions, traffic monitoring or fire and rescue operations. By “digesting” its own fuel, the aircraft could become autonomous and operate without the need for refuelling, changing batteries or recharging from the mains.

The research is being carried out by scientists from the University of Bath and the University of the West of England who are working on different aspects of the technologies involved. The University of Bath researchers are studying the complex aerodynamics needed to fly very small unmanned aircraft. The smaller an aircraft is made, the slower is its speed and the more it is vulnerable to high winds. This means that existing micro air vehicles can only fly for short periods at low speed and are too large to carry out fine manoeuvres.



But the Department of Mechanical Engineering at the University of Bath is now carrying out five research projects over the next two years to find ways of overcoming these problems. One approach they are working on is to get the micro air vehicles to flap their wings in a similar way to insects such as bees, flies or birds. By studying animals’ motion, the researchers hope to match the efficiency of nature and keep smaller aeroplanes in the sky for long enough to carry out their tasks.

Professor Ismet Gursul from the University of Bath’s Department of Mechanical Engineering says, “In general this kind of low speed aerodynamics is not as efficient as high-speed aerodynamics so you could never achieve the same efficiency as you would get for high speed civil transport aircraft. “Insects and birds are as efficient as they could be, so we look at how they are doing this and try to imitate their flapping mechanisms” Like insects and birds, it is just possible that such micro aircraft might one day even be able to feed themselves. Researchers at the University of the West of England are creating a new breed of autonomous robot that will carry out specific tasks and even “feed” themselves while working.

The research team have built a robot which can move and transmit sensor data over a radio link (over 30m inside the lab) powered solely by unrefined food including dead flies and apples. The robot, known as Ecobot II, uses a Microbial Fuel Cell as its only power source. In the Microbial Fuel Cell microbes are used to extract electricity directly from food – in this case flies or apple.

Professor Chris Melhuish, Director of the Intelligent Autonomous Systems Laboratory at the University of the West of England, says, “We are interested in developing robots that are intelligent and autonomous which means they do the right thing at the right time and without human intervention. One of the big problems with autonomy is that of energy; they have to get their energy from somewhere. “To do this they need to get energy from their environment which could include sunlight or water, but in our case it is organic matter”.

The 1kg Ecobot doesn’t move at any significant rate, about 30 metres per hour, but its ability to power itself by digesting its fuel is a major advance in the way such units have been designed so far. Insect-sized aircraft could be possible in the future, says Professor Melhuish, “The biological fuel cell would have to be made into a soft system which might, in the future, be able to do some sort of movement at a small level, a small insect level.”

The video is available for viewing at:

http://www.research-tv.com/stories/technology/bee/

Lesley Drake | alfa
Further information:
http://www.uwe.ac.uk
http://uwe.ac.uk/research

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>