Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists uncover clues to the mystery of ’gene deserts’

09.12.2004


Like the famous living deserts of the Southwest, the so-called "gene deserts" in our DNA are teeming with activity. The trick is knowing where to look for it. A new roadmap to the location of DNA segments that are significant in medical, biological and evolutionary research could emerge from studies published today (Dec. 9) by scientists at Lawrence Livermore National Laboratory (LLNL) and their colleagues. The work is reported in the online version of the journal Genome Research.

Gene deserts are long stretches of DNA between genes that were once thought to have no biological function, and were dismissed as "junk DNA." As scientists probe deeper into the DNA’s double helix, however, they are discovering that many of these "non-coding" segments actually play an important role in regulating gene activity. Research last year at the U.S. Department of Energy’s Joint Genome Institute (JGI) and Lawrence Berkeley National Laboratory (LBNL), for example, has shown that gene deserts contain DNA sequences that can switch genes on and off over considerable distances along the DNA molecule.

Paradoxically, the same JGI and LBNL scientists were recently able to remove giant chunks of gene desert DNA - whole chapters in the "book of life" - from laboratory mice with no apparent effect on the animals. Many of the deleted sequences are shared by mice and humans, and thus may have no function in humans as well. In an effort to resolve the paradox and to help researchers more easily locate critical segments along the vast stretches of DNA deserts, scientists from LLNL, LBNL, and the Pennsylvania State University developed computational tools to decipher gene regulation by comparing the genomes of many different species.



When they used the tools to compare the human genome with the recently sequenced chicken genome, they discovered that gene deserts actually fall into two distinct categories: those that remain relatively stable throughout eons of evolution, and those that undergo significant variation.

Ivan Ovcharenko, a bioinformatics scientist in LLNL’s Computation Directorate who led the study, said that many lines of evidence show that the stable desert regions, which are able to resist genomic rearrangement and fend off infringement by repetitive segments of junk DNA, are home to a surprisingly large fraction of the genome’s non-coding regulatory elements. "There are many indications that stable gene deserts represent treasure boxes of multiple gene regulatory elements, guarding the proper complex function of the flanking genes," he said.

The variable regions, on the other hand - which make up about two-thirds of the gene deserts and as much as 20 percent of the entire three-billion-base-pair human genome - "can be devoid of biological function, suggesting that a significant fraction of the genome may not be essential. "This information is very important for researchers looking for mutations leading to diseases," Ovcharenko said, "because it highlights large areas of the genome that are not likely to be involved in causing diseases."

JGI Director Eddy Rubin, a geneticist and physician who led the earlier studies indicating the presence of both functioning and non-functioning gene deserts, agreed: "If you’re a gene hunter looking for genetic clues to diseases," he said, "it might be a good idea to steer clear of regions that are devoid of critical functions or importance," such as those that were deleted in the JGI-LBNL mouse experiments.

The gene desert research is among a number of studies being published today in Genome Research online and Nature resulting from the public release of the chicken genome sequence earlier this year. LLNL and JGI researchers, led by Lisa Stubbs in LLNL’s Biology and Biotechnology Research Program and Susan Lucas at JGI, contributed to the Nature paper describing the primary sequence and comparative analysis of the chicken genome, along with Ovcharenko and Laurie Gordon of LLNL and Tijana Glavina and Andrea Aerts of JGI.

Stubbs and her team joined with JGI to compare human and chicken genomes in 2002 and focused on human chromosome 19, one of three chromosomes sequenced by JGI as the Department of Energy’s contribution to the Human Genome Project. The LLNL/JGI team’s high-quality sequence of parts of the chicken genome related to chromosome 19 was used in two of the papers published today in Nature.

Participating with Ovcharenko in the gene desert study and in the development of a new sequence comparison tool called Mulan - shown to be instrumental in deciphering evolutionary clues by comparing multiple primate, mammalian and fish species with chicken - were Stubbs and Gabriela Loots of LLNL, Marcelo Nobrega of the Genomics Division at LBNL, and Ross Hardison, Webb Miller, Belinda Giardine, Minmei Hou and Jian Ma of the Pennsylvania State University. The papers describing both projects will appear in the January print issue of Genome Research.

Charlie Osolin | EurekAlert!
Further information:
http://www.llnl.gov

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>