Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Canola study solves seed oil mystery

09.12.2004


Scientists from Michigan State University have uncovered a previously unknown metabolic mechanism used by plants to create seed oil.



The results, described Wednesday in the British journal Nature, address a longstanding question in plant biology – why do oilseed plants rely on a seemingly inefficient metabolic process to produce such prodigious amount of energy-rich oil? The answer, according to the MSU team, is that plant seeds are more efficient than anyone thought. "Seeds achieve this high efficiency by using long-known biochemical reactions that are combined in an unconventional way, which had not been expected by biochemists," said Jörg Schwender, MSU plant biology professor and lead author of the study.

The researchers studied canola (or rapeseed), an annual crop in the mustard family that is widely cultivated throughout the upper Midwest, Canada, Europe and Asia. The oil extracted from the seeds of this plant is used to make everything from margarine to industrial lubricants. Seeds store large oil reserves to use as energy to germinate and grow. In canola, for example, oil can comprise half of the seed’s weight. The rise of modern biochemistry over the last few decades has increased interest in making quantitative descriptions of plants and animals’ biochemical reactions.


When it came to canola, the biochemical balance sheet just didn’t add up. As far as researchers could tell, the seeds were relying on a creaky and inefficient pathway to produce their sought-after oil. All plants employ carbon from carbon dioxide to make organic biomass compounds such as sugars, oils and proteins in stems, leaves and flowers.

To harvest carbon from the air, plants go to lots of trouble to convert carbon dioxide into simple sugars. When canola subsequently transformed these sugars into oils, the plants appeared to cough up lots of the carbon dioxide back into the atmosphere. The chemical reaction appeared to follow the same backwards logic as a person who toils all day on the job to earn $100, only to buy a $5 sandwich and give the remainder of his paycheck back to his employer. In its experiment, the MSU team tagged carbon atoms and tracked how they were processed by developing canola seeds.

During the conversion of sugars to oils, researchers expected to see the tagged carbon go through a step-by-step series of chemical reactions known as glycolysis, used by all plants and animals to turn sugar into energy and cellular building blocks. This energy, in turn, is used to link the carbon building blocks into molecules of oil. Instead, the scientists observed an enzyme called Rubisco providing a more efficient pathway to convert sugar to carbon chains for oil. And the pathway involved lots less coughing up of carbon dioxide.

Scientists have long known that in the process of photosynthesis, Rubisco is the key enzyme that captures atmospheric carbon dioxide for conversion into sugars. However, the MSU team was surprised to see Rubisco – the enzyme’s shorthand stands for ribulose bisphosphate carboxylase/oxygenase – also acting as a key agent producing oil in the seed. In fact, in terms of metabolic heavy-lifting, Rubisco appeared to be much more efficient than glycolysis. The newly uncovered Rubisco bypass pathway produced 20 percent more of the carbon-chain building blocks to make oil while losing 40 percent less carbon dioxide than is lost during glycolysis.

The results cast new light on the seemingly well-understood protein Rubisco, which accounts for 50 percent of a plant’s total protein content and is likely the mostly abundant protein on Earth. Through its role in the snatching carbon atoms from atmospheric carbon dioxide, Rubisco has been recognized as the main chemical gateway for carbon to enter the biosphere. The new findings suggest that Rubisco also gives plants a way to greatly reduce losses back to the atmosphere while they’re synthesizing oil. "Understanding the pathways plants use to make oil will help us to develop new crop varieties with greater oil content," said co-author John Ohlrogge, MSU distinguished professor of plant biology and Michigan Agricultural Experiment Station scientist. "And this becomes especially important as the world depletes its supplies of petroleum."

Jörg Schwender | EurekAlert!
Further information:
http://www.msu.edu

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>