Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Canola study solves seed oil mystery

09.12.2004


Scientists from Michigan State University have uncovered a previously unknown metabolic mechanism used by plants to create seed oil.



The results, described Wednesday in the British journal Nature, address a longstanding question in plant biology – why do oilseed plants rely on a seemingly inefficient metabolic process to produce such prodigious amount of energy-rich oil? The answer, according to the MSU team, is that plant seeds are more efficient than anyone thought. "Seeds achieve this high efficiency by using long-known biochemical reactions that are combined in an unconventional way, which had not been expected by biochemists," said Jörg Schwender, MSU plant biology professor and lead author of the study.

The researchers studied canola (or rapeseed), an annual crop in the mustard family that is widely cultivated throughout the upper Midwest, Canada, Europe and Asia. The oil extracted from the seeds of this plant is used to make everything from margarine to industrial lubricants. Seeds store large oil reserves to use as energy to germinate and grow. In canola, for example, oil can comprise half of the seed’s weight. The rise of modern biochemistry over the last few decades has increased interest in making quantitative descriptions of plants and animals’ biochemical reactions.


When it came to canola, the biochemical balance sheet just didn’t add up. As far as researchers could tell, the seeds were relying on a creaky and inefficient pathway to produce their sought-after oil. All plants employ carbon from carbon dioxide to make organic biomass compounds such as sugars, oils and proteins in stems, leaves and flowers.

To harvest carbon from the air, plants go to lots of trouble to convert carbon dioxide into simple sugars. When canola subsequently transformed these sugars into oils, the plants appeared to cough up lots of the carbon dioxide back into the atmosphere. The chemical reaction appeared to follow the same backwards logic as a person who toils all day on the job to earn $100, only to buy a $5 sandwich and give the remainder of his paycheck back to his employer. In its experiment, the MSU team tagged carbon atoms and tracked how they were processed by developing canola seeds.

During the conversion of sugars to oils, researchers expected to see the tagged carbon go through a step-by-step series of chemical reactions known as glycolysis, used by all plants and animals to turn sugar into energy and cellular building blocks. This energy, in turn, is used to link the carbon building blocks into molecules of oil. Instead, the scientists observed an enzyme called Rubisco providing a more efficient pathway to convert sugar to carbon chains for oil. And the pathway involved lots less coughing up of carbon dioxide.

Scientists have long known that in the process of photosynthesis, Rubisco is the key enzyme that captures atmospheric carbon dioxide for conversion into sugars. However, the MSU team was surprised to see Rubisco – the enzyme’s shorthand stands for ribulose bisphosphate carboxylase/oxygenase – also acting as a key agent producing oil in the seed. In fact, in terms of metabolic heavy-lifting, Rubisco appeared to be much more efficient than glycolysis. The newly uncovered Rubisco bypass pathway produced 20 percent more of the carbon-chain building blocks to make oil while losing 40 percent less carbon dioxide than is lost during glycolysis.

The results cast new light on the seemingly well-understood protein Rubisco, which accounts for 50 percent of a plant’s total protein content and is likely the mostly abundant protein on Earth. Through its role in the snatching carbon atoms from atmospheric carbon dioxide, Rubisco has been recognized as the main chemical gateway for carbon to enter the biosphere. The new findings suggest that Rubisco also gives plants a way to greatly reduce losses back to the atmosphere while they’re synthesizing oil. "Understanding the pathways plants use to make oil will help us to develop new crop varieties with greater oil content," said co-author John Ohlrogge, MSU distinguished professor of plant biology and Michigan Agricultural Experiment Station scientist. "And this becomes especially important as the world depletes its supplies of petroleum."

Jörg Schwender | EurekAlert!
Further information:
http://www.msu.edu

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>