Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Birds, butterflies, bacteria - same law of biology appears to apply

09.12.2004


The connection between species richness and area occupied, recognized by biologists for more than a hundred years as a fundamental ecological relationship in plant and in animal communities, has been discerned for the first time at the microbial level.



A pair of papers in the Dec. 9 issue of the journal Nature, one focused on bacteria and another on a microbial fungi, shows that the number of species present – the diversity – increases as the area they occupy increases. "The results suggest that this relationship may be a universal law common to all domains of life," say Claire Horner-Devine, University of Washington assistant professor of aquatic and fishery sciences and lead author of the paper concerning bacteria. Jessica Green, University of California, Merced, assistant professor of natural sciences, is lead author of the other.

If true of other microbes, the work will give ecologists new ways of understanding the ecology and biodiversity of these tiny organisms, most of which are too small to see even with microscopes, Horner-Devine and Green say. Bacteria and fungi may well comprise the bulk of species on Earth and, despite their small size, play roles in everything from global climate change to water purification to recycling of dead plants, animals and other matter. "Bacteria, for example, decompose organic material that, among other things, provides the majority of nitrogen needed by the plants we eat," Horner-Devine says. "So understanding the distribution and basic ecology of one of the most abundant and diverse groups of organisms on Earth is crucial."


The idea that the number of species increases as the area increases -– referred to as the "species-area relationship" -– may seem obvious to anyone who has, say, compared a garden-size patch of wildflowers to an entire meadow and realized how many more kinds of flowers there are in the latter, Horner-Devine says. Still, some scientists thought microbes might be different.

"There has been a long standing idea that microbes are so abundant and so small that all the different types of bacteria are mixed up all the time and are, therefore, randomly distributed," says Jennifer Hughes of Brown University, a co-author on the bacteria paper, along with Melissa Lage of Brown and Brendan Bohannan of Stanford University. Horner-Devine was a graduate student at Stanford before joining the University of Washington this fall.

The groups took advantage of existing distance-decay formulas: mathematical formulas previously developed for plant and animal communities that describe how many more types, or species, can be expected to be shared from two samples taken far apart – say at opposite ends of a field or a lake – than from two samples taken close together.

The researchers were the first to couple this ecological thinking with information about microbes found using molecular tools developed in just the last 10 years, Horner-Devine says. Because it is so difficult to determine exact species of microorganisms, the researchers looked for DNA, or pieces of DNA, and compared that to tell different "types" apart.

It’s a different taxonomic resolution than species, Green says, but it is a consistent measure of community composition. Green and her co-authors sampled the microbial fungi Ascomycota in desert soils of a 62-square-mile national park in Australia. The Horner-Devine paper was based on bacteria sampled across a half-acre in a New England salt marsh.

The studies span different microbial taxa, habitats, continents, molecular techniques and spatial scales, leading Green to say, "Our data firmly establishes that like plants and animals, microbes are not randomly distributed but rather exhibit spatially predictable, aggregated patterns at multiple spatial scales." This result has big implications, says Hughes. "If the composition of bacteria is different in different places, then they might be performing these functions differently. For example, a salt marsh in Rhode Island may behave differently in terms of how it buffers Narragansett Bay from nitrogen pollution than a similar looking marsh in San Francisco Bay."

Both studies received funding from the National Science Foundation. The bacteria work also was supported the American Association of University Women, and the fungi work by the Australian Research Council and the New South Wales Resource and Conservation Assessment Council. "The search for generalities has been especially challenging in ecology," says Stanford’s Bohannan. "This work supports the idea that the species-area relationship is a truly general pattern, applying to elephants and bacteria and everything in between."

Sandra Hines | EurekAlert!
Further information:
http://www.washington.edu

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Researchers invent tiny, light-powered wires to modulate brain's electrical signals

21.02.2018 | Life Sciences

The “Holy Grail” of peptide chemistry: Making peptide active agents available orally

21.02.2018 | Life Sciences

Atomic structure of ultrasound material not what anyone expected

21.02.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>