Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Birds, butterflies, bacteria - same law of biology appears to apply

09.12.2004


The connection between species richness and area occupied, recognized by biologists for more than a hundred years as a fundamental ecological relationship in plant and in animal communities, has been discerned for the first time at the microbial level.



A pair of papers in the Dec. 9 issue of the journal Nature, one focused on bacteria and another on a microbial fungi, shows that the number of species present – the diversity – increases as the area they occupy increases. "The results suggest that this relationship may be a universal law common to all domains of life," say Claire Horner-Devine, University of Washington assistant professor of aquatic and fishery sciences and lead author of the paper concerning bacteria. Jessica Green, University of California, Merced, assistant professor of natural sciences, is lead author of the other.

If true of other microbes, the work will give ecologists new ways of understanding the ecology and biodiversity of these tiny organisms, most of which are too small to see even with microscopes, Horner-Devine and Green say. Bacteria and fungi may well comprise the bulk of species on Earth and, despite their small size, play roles in everything from global climate change to water purification to recycling of dead plants, animals and other matter. "Bacteria, for example, decompose organic material that, among other things, provides the majority of nitrogen needed by the plants we eat," Horner-Devine says. "So understanding the distribution and basic ecology of one of the most abundant and diverse groups of organisms on Earth is crucial."


The idea that the number of species increases as the area increases -– referred to as the "species-area relationship" -– may seem obvious to anyone who has, say, compared a garden-size patch of wildflowers to an entire meadow and realized how many more kinds of flowers there are in the latter, Horner-Devine says. Still, some scientists thought microbes might be different.

"There has been a long standing idea that microbes are so abundant and so small that all the different types of bacteria are mixed up all the time and are, therefore, randomly distributed," says Jennifer Hughes of Brown University, a co-author on the bacteria paper, along with Melissa Lage of Brown and Brendan Bohannan of Stanford University. Horner-Devine was a graduate student at Stanford before joining the University of Washington this fall.

The groups took advantage of existing distance-decay formulas: mathematical formulas previously developed for plant and animal communities that describe how many more types, or species, can be expected to be shared from two samples taken far apart – say at opposite ends of a field or a lake – than from two samples taken close together.

The researchers were the first to couple this ecological thinking with information about microbes found using molecular tools developed in just the last 10 years, Horner-Devine says. Because it is so difficult to determine exact species of microorganisms, the researchers looked for DNA, or pieces of DNA, and compared that to tell different "types" apart.

It’s a different taxonomic resolution than species, Green says, but it is a consistent measure of community composition. Green and her co-authors sampled the microbial fungi Ascomycota in desert soils of a 62-square-mile national park in Australia. The Horner-Devine paper was based on bacteria sampled across a half-acre in a New England salt marsh.

The studies span different microbial taxa, habitats, continents, molecular techniques and spatial scales, leading Green to say, "Our data firmly establishes that like plants and animals, microbes are not randomly distributed but rather exhibit spatially predictable, aggregated patterns at multiple spatial scales." This result has big implications, says Hughes. "If the composition of bacteria is different in different places, then they might be performing these functions differently. For example, a salt marsh in Rhode Island may behave differently in terms of how it buffers Narragansett Bay from nitrogen pollution than a similar looking marsh in San Francisco Bay."

Both studies received funding from the National Science Foundation. The bacteria work also was supported the American Association of University Women, and the fungi work by the Australian Research Council and the New South Wales Resource and Conservation Assessment Council. "The search for generalities has been especially challenging in ecology," says Stanford’s Bohannan. "This work supports the idea that the species-area relationship is a truly general pattern, applying to elephants and bacteria and everything in between."

Sandra Hines | EurekAlert!
Further information:
http://www.washington.edu

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>