Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Cell marker identifies patients who are more likely to respond to taxol


Researchers at The University of Texas M. D. Anderson Cancer Center have found a potential predictor of response to the chemotherapy drug Taxol, which is commonly used before or after surgery for stage I-III breast cancers, even though only a subset of women ultimately benefit from this treatment.

Patients whose breast cancer cells have lost their ability to express a protein called "tau" are twice as likely to have a good response to Taxol treatment, the researchers report at the annual San Antonio Breast Cancer Symposium meeting.

The finding makes sense because tau promotes the assembly of microtubules, which provide structure to the cell and help it divide. Taxol works by binding to microtubules to form an inappropriately stable structure which ultimately leads to cell death. "In the absence of tau, Taxol stabilizes microtubules more easily," says the study’s lead researcher, Lajos Pusztai, M.D., Ph.D., an associate professor in the Department of Breast Medical Oncology.

If validated in larger studies, the finding suggests that tumor tissue could be screened to predict if it will respond to Taxol, says Pusztai. "If it doesn’t, perhaps other chemotherapy regimens would work better."

The results also suggest a way to improve the use of Taxol, Pusztai says. "If you block the effect of tau with an agent, you could possibly increase the effectiveness of Taxol in more patients, making them super responders."

The researchers came up with their discovery after examining breast cancer biopsy samples taken from 82 patients, 21 of whom had a complete disappearance of their cancer after Taxol-containing treatment. They looked at the difference between these responders and non-responders in 22,000 genes, and found that tumors were highly sensitive to treatment that had low levels of tau messenger RNA (mRNA) expression in their cancer cells. This observation was confirmed by examining tau protein expression using a routine pathological assay, immunohistochemistry, in 122 additional patients. Then, research in breast cancer cell lines in the laboratory were undertaken to look at how low expression of tau leads to increased sensitivity to Taxol.

Pusztai says that about 25 percent of all patients show very high sensitivity to the Taxol-containing chemotherapy, and respond with complete disappearance of cancer after treatment.

"Assessment of tau expression at the time of diagnosis could identify a group of patients who are at least twice as likely to have high sensitivity to the treatment," he says. "The rest of the patients may not benefit much from the drug because none of the patients who had high levels of tau mRNA expression in their cancer experienced complete response to therapy.

Before routine use of such a test can be recommended, investigators say these findings will need to be examined in a larger, randomized study to accurately determine the clinical value of tau as a predictive marker.

Nancy Jensen | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>