Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New molecular classification of breast cancer predicts response to chemotherapy

09.12.2004


Different molecular subtypes of breast cancer respond differently to chemotherapy, a research team from The University of Texas M. D. Anderson Cancer Center reported at the annual San Antonio Breast Cancer Symposium meeting.



The findings reinforce the emerging notion that breast cancer should be classified according to its gene expression profile, in order to make accurate predictions about the outcome of the disease and select the optimal treatment for patients, says the senior investigator, Lajos Pusztai, M.D., Ph.D., an associate professor in the Department of Breast Medical Oncology.

Four major molecular subgroups of breast cancer ? normal-like, luminal (ER-positive), basal-like (mostly ER-negative), or erbb2+ (mostly HER-2 amplified) ? have been previously defined, based on expression of 424 genes involved in cancer development. Scientists have already shown that each subgroup has a different prognosis. In this recent study Pusztai and his group looked at whether these molecular subgroups also respond differently to chemotherapy that is delivered before surgery.


The research team obtained tumor tissue biopsies from 82 patients with newly diagnosed breast cancer before they were given a commonly used chemotherapy (Taxol/FAC). Patients with basal-like and erbb2+ subgroups were found to have the highest rates (45 percent each) of a pathological complete response, while only 6 percent of luminal tumors had a complete response. Among the normal-like cancers, no response was seen.

They then looked at the genes associated with response in basal-like and erbb2+ patients and found that they were different, "suggesting that the mechanisms of chemotherapy sensitivity may be unique to a subgroup," Pusztai says.

"This is of great interest because it suggests that stratification of patients into molecular subgroups may be needed in order to develop the most accurate predictors of treatment response," he says. "Different sets of genes present in different molecular subgroups may determine the response to a particular regimen of chemotherapy."

Nancy Jensen | EurekAlert!
Further information:
http://www.mdanderson.org

More articles from Life Sciences:

nachricht Rochester scientists discover gene controlling genetic recombination rates
23.04.2018 | University of Rochester

nachricht One step closer to reality
20.04.2018 | Max-Planck-Institut für Entwicklungsbiologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Structured light and nanomaterials open new ways to tailor light at the nanoscale

23.04.2018 | Physics and Astronomy

On the shape of the 'petal' for the dissipation curve

23.04.2018 | Physics and Astronomy

Clean and Efficient – Fraunhofer ISE Presents Hydrogen Technologies at the HANNOVER MESSE 2018

23.04.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>