Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New molecular classification of breast cancer predicts response to chemotherapy

09.12.2004


Different molecular subtypes of breast cancer respond differently to chemotherapy, a research team from The University of Texas M. D. Anderson Cancer Center reported at the annual San Antonio Breast Cancer Symposium meeting.



The findings reinforce the emerging notion that breast cancer should be classified according to its gene expression profile, in order to make accurate predictions about the outcome of the disease and select the optimal treatment for patients, says the senior investigator, Lajos Pusztai, M.D., Ph.D., an associate professor in the Department of Breast Medical Oncology.

Four major molecular subgroups of breast cancer ? normal-like, luminal (ER-positive), basal-like (mostly ER-negative), or erbb2+ (mostly HER-2 amplified) ? have been previously defined, based on expression of 424 genes involved in cancer development. Scientists have already shown that each subgroup has a different prognosis. In this recent study Pusztai and his group looked at whether these molecular subgroups also respond differently to chemotherapy that is delivered before surgery.


The research team obtained tumor tissue biopsies from 82 patients with newly diagnosed breast cancer before they were given a commonly used chemotherapy (Taxol/FAC). Patients with basal-like and erbb2+ subgroups were found to have the highest rates (45 percent each) of a pathological complete response, while only 6 percent of luminal tumors had a complete response. Among the normal-like cancers, no response was seen.

They then looked at the genes associated with response in basal-like and erbb2+ patients and found that they were different, "suggesting that the mechanisms of chemotherapy sensitivity may be unique to a subgroup," Pusztai says.

"This is of great interest because it suggests that stratification of patients into molecular subgroups may be needed in order to develop the most accurate predictors of treatment response," he says. "Different sets of genes present in different molecular subgroups may determine the response to a particular regimen of chemotherapy."

Nancy Jensen | EurekAlert!
Further information:
http://www.mdanderson.org

More articles from Life Sciences:

nachricht Biofuel produced by microalgae
28.02.2017 | Tokyo Institute of Technology

nachricht Decoding the genome's cryptic language
27.02.2017 | University of California - San Diego

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Scientists reach back in time to discover some of the most power-packed galaxies

28.02.2017 | Physics and Astronomy

Nano 'sandwich' offers unique properties

28.02.2017 | Materials Sciences

Light beam replaces blood test during heart surgery

28.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>