Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists stalk PPAR-gamma, find novel cancer connection

08.12.2004


Research shows existing diabetes drugs may kill multiple myeloma



In laboratory tests on multiple myeloma cells, University of Rochester researchers found that this type of cancer expresses a protein that makes it an easy target for an existing class of diabetes drugs. After more investigation, they hope the discovery will lead to a new, targeted therapy for myeloma patients. "To our knowledge, this is the first time anyone has shown that multiple myeloma cells are sensitive to these agents, and we found multiple myeloma cells are killed quite effectively," says lead author Richard P. Phipps, Ph.D., professor of Environmental Medicine and of Oncology at the University of Rochester Medical Center.

The research was reported in the November issue of Clinical Immunology.


The drugs in question are from the thiazolidinedione (TZD) class of anti-diabetic therapies, known as PPAR-gamma ligands. They bind to PPAR-gamma, a protein associated with multiple myeloma and many other cancers, as well as chronic inflammation and diabetes. When the drugs bind to PPAR-gamma, at least in laboratory experiments, the cancerous cells are destroyed.

PPAR-ligands are emerging as a new type of cancer therapy because they directly target errant cells and stop tumor growth, at least in animal models. Phipps’ laboratory also found that the PPAR-ligands currently used in anti-diabetic drugs could induce a type of cell death called apoptosis. This is significant because multiple myeloma is very difficult to treat, as it is usually resistant to drug-induced apoptosis.

Another encouraging factor is that the anti-diabetes drugs were able to kill the multiple myeloma cells, despite the fact that myeloma produces its own growth factor (Interleukin 6), which usually enables the cancer to multiply more effectively. Furthermore, the Phipps lab found that the effectiveness of the TZD drugs was enhanced when combined with Vitamin A-like compounds.

Co-investigator Steven Bernstein, M.D., who treats myeloma patients at the University’s James P. Wilmot Cancer Center, is cautious but hopeful about the prospects of this research leading to a new treatment. "Although we are optimistic about these early findings, we need to do further investigation to understand how the TZD class of drugs work against multiple myeloma, before clinical trials are warranted."

Each year doctors diagnose about 14,000 people in the United States with multiple myeloma, which accounts for about 10 percent of the blood cancers. Myeloma is characterized by an abnormal number of white blood cells called plasma cells. They crowd out healthy blood cells in the bone marrow, and make proteins that lead to bone destruction, kidney damage, and recurrent infections.

High-dose chemotherapy and stem-cell transplant are the standard treatments. Recently, patients have also experienced some success with two new, biologically targeted therapies: thalidomide, which was given decades ago to women for morning sickness, and the proteosome inhibitor Velcade, which targets the parts of the cell that regulates protein expression, Bernstein said. The latest research may offer a third novel approach.

The myeloma research emerged from a larger investigation conducted by Phipps’ laboratory into inflammation, the culprit of many serious illnesses. One area of focus is how the immune system reacts to PPAR-ligands.

Leslie Orr | EurekAlert!
Further information:
http://www.rochester.edu

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>