Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists stalk PPAR-gamma, find novel cancer connection

08.12.2004


Research shows existing diabetes drugs may kill multiple myeloma



In laboratory tests on multiple myeloma cells, University of Rochester researchers found that this type of cancer expresses a protein that makes it an easy target for an existing class of diabetes drugs. After more investigation, they hope the discovery will lead to a new, targeted therapy for myeloma patients. "To our knowledge, this is the first time anyone has shown that multiple myeloma cells are sensitive to these agents, and we found multiple myeloma cells are killed quite effectively," says lead author Richard P. Phipps, Ph.D., professor of Environmental Medicine and of Oncology at the University of Rochester Medical Center.

The research was reported in the November issue of Clinical Immunology.


The drugs in question are from the thiazolidinedione (TZD) class of anti-diabetic therapies, known as PPAR-gamma ligands. They bind to PPAR-gamma, a protein associated with multiple myeloma and many other cancers, as well as chronic inflammation and diabetes. When the drugs bind to PPAR-gamma, at least in laboratory experiments, the cancerous cells are destroyed.

PPAR-ligands are emerging as a new type of cancer therapy because they directly target errant cells and stop tumor growth, at least in animal models. Phipps’ laboratory also found that the PPAR-ligands currently used in anti-diabetic drugs could induce a type of cell death called apoptosis. This is significant because multiple myeloma is very difficult to treat, as it is usually resistant to drug-induced apoptosis.

Another encouraging factor is that the anti-diabetes drugs were able to kill the multiple myeloma cells, despite the fact that myeloma produces its own growth factor (Interleukin 6), which usually enables the cancer to multiply more effectively. Furthermore, the Phipps lab found that the effectiveness of the TZD drugs was enhanced when combined with Vitamin A-like compounds.

Co-investigator Steven Bernstein, M.D., who treats myeloma patients at the University’s James P. Wilmot Cancer Center, is cautious but hopeful about the prospects of this research leading to a new treatment. "Although we are optimistic about these early findings, we need to do further investigation to understand how the TZD class of drugs work against multiple myeloma, before clinical trials are warranted."

Each year doctors diagnose about 14,000 people in the United States with multiple myeloma, which accounts for about 10 percent of the blood cancers. Myeloma is characterized by an abnormal number of white blood cells called plasma cells. They crowd out healthy blood cells in the bone marrow, and make proteins that lead to bone destruction, kidney damage, and recurrent infections.

High-dose chemotherapy and stem-cell transplant are the standard treatments. Recently, patients have also experienced some success with two new, biologically targeted therapies: thalidomide, which was given decades ago to women for morning sickness, and the proteosome inhibitor Velcade, which targets the parts of the cell that regulates protein expression, Bernstein said. The latest research may offer a third novel approach.

The myeloma research emerged from a larger investigation conducted by Phipps’ laboratory into inflammation, the culprit of many serious illnesses. One area of focus is how the immune system reacts to PPAR-ligands.

Leslie Orr | EurekAlert!
Further information:
http://www.rochester.edu

More articles from Life Sciences:

nachricht Complementing conventional antibiotics
24.05.2018 | Goethe-Universität Frankfurt am Main

nachricht Building a brain, cell by cell: Researchers make a mini neuron network (of two)
23.05.2018 | Institute of Industrial Science, The University of Tokyo

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

When corals eat plastics

24.05.2018 | Ecology, The Environment and Conservation

Surgery involving ultrasound energy found to treat high blood pressure

24.05.2018 | Medical Engineering

First chip-scale broadband optical system that can sense molecules in the mid-IR

24.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>