Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists align billion-year-old protein with embryonic heart defects

08.12.2004


University of Rochester scientists studying a vital protein called Serum Response Factor (SRF) in mice have learned new and unexpected facts about SRF’s role in early cardiovascular development, and how a defect in this gene may be an underlying cause in human miscarriages.



The research is reported in this week’s Proceedings of the National Academy of Sciences. At this point it is unclear whether subtle defects in SRF might also be linked to adult cardiovascular disease. However, the research provides a foundation for understanding how gene mutations may disrupt heart function, perhaps making some adults more susceptible to heart failure or irregular reactions to drugs.

"One reason for studying the biology of our genetic blueprint is so that we can understand how mutations in the genes encoding for proteins such as SRF may relate to human disease," says Joseph M. Miano, Ph.D., associate professor of Medicine in the Center for Cardiovascular Research at the University’s Aab Institute of Biomedical Sciences. "Defining the full spectrum of genetic mutations is key to genetic screening and gene-based therapies."


SRF is one of nature’s oldest proteins and is essential for life because it supports the basic internal structure of all living cells. Its function is to carefully turn on 300 of our 30,000 genes. But until now, scientists did not know much about its role in the heart region.

Miano’s laboratory led a collaborative study of SRF with investigators from the Medical College of Wisconsin and Johns Hopkins University School of Medicine. They studied mouse embryos, using genetic trickery to nullify SRF in heart cells and key blood vessel cells called smooth muscle cells. They compared the mutant mice to those with a normal amount of SRF in the heart and blood vessels. The heart and related vessels did not develop properly in the mice without SRF, the team discovered.

In fact, while analyzing the heart cells under a high-powered electron microscope, the lab discovered that normal heart cells (with SRF) contained the expected bundles of healthy fibers. Shaped like rubber bands, the bundles work like bands of muscle to keep the heart contracting normally. But in the absence of SRF, the neat bundles were gone. Instead, they were scattered about the heart region, as if the rubber band had been "shredded," Miano says.

Scientists concluded that cells lacking SRF could not sustain life because they lacked the necessary shape, structure and function to stay vital.

"SRF serves a very critical function in directing genes to develop an internal structure that acts sort of like the skeleton in the human body," Miano explains. "You can imagine that without a skeleton, our bodies would flop to the floor. Cells need the same structure and form in order to migrate, contract, and work properly."

Thus, although other scientists have defined hundreds of genes that may cause miscarriages due to cardiovascular defects, the latest research also links SRF for the first time to embryonic heart development. The National Heart, Lung and Blood Institute of the National Institutes of Health funded the research.

Miano’s group plans to conduct further studies in mice to pinpoint the exact cause of death among the animals that lack the SRF protein. In addition, the team is searching for all of the genes directed by SRF. The long-tem goal of the research is to provide a foundation for genetic screening for all types of cardiovascular disorders, and perhaps a way to replace the faulty genes through targeted therapy.

Scientists studying a vital protein called Serum Response Factor (SRF) in mice have learned new and unexpected facts about SRF’s role in early cardiovascular development, and how a defect in this gene may be an underlying cause in human miscarriages. The research provides a foundation for understanding how gene mutations may disrupt heart function, perhaps making some adults more susceptible to heart failure or irregular reactions to drugs.

Leslie Orr | EurekAlert!
Further information:
http://www.rochester.edu

More articles from Life Sciences:

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

nachricht How herpesviruses win the footrace against the immune system
26.05.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>