Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protein ’key’ could aid search for cancer drugs

08.12.2004


Scientists determine how ’trump card’ protein blocks DNA replication



New research at Rice University is allowing biochemists to understand a key hierarchy of protein interactions that occurs in DNA replication, showing for the first time how a key protein "trumps" its rivals and shuts down cell division while DNA repairs take place.
The work, sponsored by the American Cancer Society, appears in the Dec. 8 issue of the journal Structure. It could aid drug makers in designing targeted therapies that block cancer cells from multiplying.

"All cancers are marked by some form of DNA replication gone awry, so a basic understanding of DNA replication is of paramount importance to those designing cancer-fighting drugs," said lead author Yousif Shamoo, assistant professor of biochemistry and cell biology. "In addition, almost every form of life – including bacteria – use a variant of the protein that we studied, and we believe the work may also aid drug makers who are developing new forms of antibiotics."



In the study, Shamoo and graduate student John Bruning used x-ray crystallography and isothermal titration calorimetry to determine the structures of two variants of a protein called Human Proliferating Cellular Nuclear Antigen, or PCNA.

PCNA is a member of the "sliding clamp" family of proteins, which are so-named because of their unique shape and function. Sliding clamps are ring-shaped proteins that slide along strands of DNA. DNA is fed through the hole in the center, and the PCNA acts as a docking mechanism for other proteins that need to interact with the DNA to make repairs or copies or to take part in other genetically regulated tasks. Genes that code for sliding clamp proteins are present in all forms of life except for some viruses.

In humans, at least a dozen proteins are known to dock with PCNA. Each of them docks with PCNA by inserting a kind of key known as a PCNA-interacting protein, or "PIP-box," which binds chemically to the PCNA and holds the docked protein on the DNA strand. "Each protein that binds with PCNA has its own version of the key, but all the keys fit into the same lock," said Shamoo. "There is a hierarchy among the PIP-box proteins, with some winning out and trumping others before they get a chance to bind. By deciphering the structure of two of these keys, while they were in the lock, we were able to determine their binding energies and find out how the strongest key -- the trump card -- blocks the others and shuts down DNA replication."

The structure of PCNA containing the trump key, the PIP-box from a cell regulatory protein called p21, was solved by researchers at the Rockefeller University. P21 is important because it is produced by cells with damaged DNA. In healthy cells, p21 binds strongly with PCNA to prevent the cells from making copies of DNA until the genetic damage is repaired.

Shamoo and Bruning solved the structure of PCNA containing two other forms of PIP-box keys, both of which are involved in DNA replication. By comparing the chemical structure of the weaker keys against the stronger p21 key, they were able to determine how p21 optimizes its connection to PCNA.

If drug makers can replicate p21’s strategy in targeted cancer-fighting compounds, they could attack cancer cells’ ability to reproduce at the most basic level.

"The sliding clamp protein that’s used by bacteria has the same function as PCNA in humans, but the keys for bacteria are very different from those in humans," said Bruning. "If bacteria use a similar hierarchy to access to their PCNA, it might be possible to design an antibiotic that plays the bacterial trump card without affecting human cells at all."

Jade Boyd | EurekAlert!
Further information:
http://www.rice.edu

More articles from Life Sciences:

nachricht At last, butterflies get a bigger, better evolutionary tree
16.02.2018 | Florida Museum of Natural History

nachricht New treatment strategies for chronic kidney disease from the animal kingdom
16.02.2018 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

Im Focus: Autonomous 3D scanner supports individual manufacturing processes

Let’s say the armrest is broken in your vintage car. As things stand, you would need a lot of luck and persistence to find the right spare part. But in the world of Industrie 4.0 and production with batch sizes of one, you can simply scan the armrest and print it out. This is made possible by the first ever 3D scanner capable of working autonomously and in real time. The autonomous scanning system will be on display at the Hannover Messe Preview on February 6 and at the Hannover Messe proper from April 23 to 27, 2018 (Hall 6, Booth A30).

Part of the charm of vintage cars is that they stopped making them long ago, so it is special when you do see one out on the roads. If something breaks or...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Fingerprints of quantum entanglement

16.02.2018 | Information Technology

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers

16.02.2018 | Health and Medicine

Hubble sees Neptune's mysterious shrinking storm

16.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>