Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protein ’key’ could aid search for cancer drugs

08.12.2004


Scientists determine how ’trump card’ protein blocks DNA replication



New research at Rice University is allowing biochemists to understand a key hierarchy of protein interactions that occurs in DNA replication, showing for the first time how a key protein "trumps" its rivals and shuts down cell division while DNA repairs take place.
The work, sponsored by the American Cancer Society, appears in the Dec. 8 issue of the journal Structure. It could aid drug makers in designing targeted therapies that block cancer cells from multiplying.

"All cancers are marked by some form of DNA replication gone awry, so a basic understanding of DNA replication is of paramount importance to those designing cancer-fighting drugs," said lead author Yousif Shamoo, assistant professor of biochemistry and cell biology. "In addition, almost every form of life – including bacteria – use a variant of the protein that we studied, and we believe the work may also aid drug makers who are developing new forms of antibiotics."



In the study, Shamoo and graduate student John Bruning used x-ray crystallography and isothermal titration calorimetry to determine the structures of two variants of a protein called Human Proliferating Cellular Nuclear Antigen, or PCNA.

PCNA is a member of the "sliding clamp" family of proteins, which are so-named because of their unique shape and function. Sliding clamps are ring-shaped proteins that slide along strands of DNA. DNA is fed through the hole in the center, and the PCNA acts as a docking mechanism for other proteins that need to interact with the DNA to make repairs or copies or to take part in other genetically regulated tasks. Genes that code for sliding clamp proteins are present in all forms of life except for some viruses.

In humans, at least a dozen proteins are known to dock with PCNA. Each of them docks with PCNA by inserting a kind of key known as a PCNA-interacting protein, or "PIP-box," which binds chemically to the PCNA and holds the docked protein on the DNA strand. "Each protein that binds with PCNA has its own version of the key, but all the keys fit into the same lock," said Shamoo. "There is a hierarchy among the PIP-box proteins, with some winning out and trumping others before they get a chance to bind. By deciphering the structure of two of these keys, while they were in the lock, we were able to determine their binding energies and find out how the strongest key -- the trump card -- blocks the others and shuts down DNA replication."

The structure of PCNA containing the trump key, the PIP-box from a cell regulatory protein called p21, was solved by researchers at the Rockefeller University. P21 is important because it is produced by cells with damaged DNA. In healthy cells, p21 binds strongly with PCNA to prevent the cells from making copies of DNA until the genetic damage is repaired.

Shamoo and Bruning solved the structure of PCNA containing two other forms of PIP-box keys, both of which are involved in DNA replication. By comparing the chemical structure of the weaker keys against the stronger p21 key, they were able to determine how p21 optimizes its connection to PCNA.

If drug makers can replicate p21’s strategy in targeted cancer-fighting compounds, they could attack cancer cells’ ability to reproduce at the most basic level.

"The sliding clamp protein that’s used by bacteria has the same function as PCNA in humans, but the keys for bacteria are very different from those in humans," said Bruning. "If bacteria use a similar hierarchy to access to their PCNA, it might be possible to design an antibiotic that plays the bacterial trump card without affecting human cells at all."

Jade Boyd | EurekAlert!
Further information:
http://www.rice.edu

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>