Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protein ’key’ could aid search for cancer drugs

08.12.2004


Scientists determine how ’trump card’ protein blocks DNA replication



New research at Rice University is allowing biochemists to understand a key hierarchy of protein interactions that occurs in DNA replication, showing for the first time how a key protein "trumps" its rivals and shuts down cell division while DNA repairs take place.
The work, sponsored by the American Cancer Society, appears in the Dec. 8 issue of the journal Structure. It could aid drug makers in designing targeted therapies that block cancer cells from multiplying.

"All cancers are marked by some form of DNA replication gone awry, so a basic understanding of DNA replication is of paramount importance to those designing cancer-fighting drugs," said lead author Yousif Shamoo, assistant professor of biochemistry and cell biology. "In addition, almost every form of life – including bacteria – use a variant of the protein that we studied, and we believe the work may also aid drug makers who are developing new forms of antibiotics."



In the study, Shamoo and graduate student John Bruning used x-ray crystallography and isothermal titration calorimetry to determine the structures of two variants of a protein called Human Proliferating Cellular Nuclear Antigen, or PCNA.

PCNA is a member of the "sliding clamp" family of proteins, which are so-named because of their unique shape and function. Sliding clamps are ring-shaped proteins that slide along strands of DNA. DNA is fed through the hole in the center, and the PCNA acts as a docking mechanism for other proteins that need to interact with the DNA to make repairs or copies or to take part in other genetically regulated tasks. Genes that code for sliding clamp proteins are present in all forms of life except for some viruses.

In humans, at least a dozen proteins are known to dock with PCNA. Each of them docks with PCNA by inserting a kind of key known as a PCNA-interacting protein, or "PIP-box," which binds chemically to the PCNA and holds the docked protein on the DNA strand. "Each protein that binds with PCNA has its own version of the key, but all the keys fit into the same lock," said Shamoo. "There is a hierarchy among the PIP-box proteins, with some winning out and trumping others before they get a chance to bind. By deciphering the structure of two of these keys, while they were in the lock, we were able to determine their binding energies and find out how the strongest key -- the trump card -- blocks the others and shuts down DNA replication."

The structure of PCNA containing the trump key, the PIP-box from a cell regulatory protein called p21, was solved by researchers at the Rockefeller University. P21 is important because it is produced by cells with damaged DNA. In healthy cells, p21 binds strongly with PCNA to prevent the cells from making copies of DNA until the genetic damage is repaired.

Shamoo and Bruning solved the structure of PCNA containing two other forms of PIP-box keys, both of which are involved in DNA replication. By comparing the chemical structure of the weaker keys against the stronger p21 key, they were able to determine how p21 optimizes its connection to PCNA.

If drug makers can replicate p21’s strategy in targeted cancer-fighting compounds, they could attack cancer cells’ ability to reproduce at the most basic level.

"The sliding clamp protein that’s used by bacteria has the same function as PCNA in humans, but the keys for bacteria are very different from those in humans," said Bruning. "If bacteria use a similar hierarchy to access to their PCNA, it might be possible to design an antibiotic that plays the bacterial trump card without affecting human cells at all."

Jade Boyd | EurekAlert!
Further information:
http://www.rice.edu

More articles from Life Sciences:

nachricht Hunting pathogens at full force
22.03.2017 | Helmholtz-Zentrum für Infektionsforschung

nachricht A 155 carat diamond with 92 mm diameter
22.03.2017 | Universität Augsburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars

22.03.2017 | Physics and Astronomy

New gel-like coating beefs up the performance of lithium-sulfur batteries

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>