Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New malaria enzyme laid bare with help of computer calculations

08.12.2004


Using only computers, a research team at Uppsala University in Sweden has managed to reveal both the structure and the function of a newly discovered enzyme from the most dangerous malaria parasite, Plasmodium falciparum. All that was needed was the amino acid sequence of the enzyme. The findings may represent a breakthrough for future pharmaceutical research.

The research was carried out within the framework of a project (RAPID) at the Uppsala University Center for Structural Biology, Medical Chemistry, and Computer Chemistry, which was established last year and is directed by Professor Alwyn Jones. The aim is to develop drugs for some of the most severe and widely spread diseases in the world, such as malaria and TB. The results, which recently came out as an “accelerated publication” in the journal Biochemistry, are the work of Professor Johan Åqvist and doctoral student Sinisa Bjelic.

“The enzyme we studied is a new type, with previously unknown catalyst groups. This made it especially interesting as a target molecule for new drugs. Using only computer calculations, we succeeded in revealing both what it looks like and how it functions. It’s the first time anybody ever did that,” says Johan Åqvist.



They started by comparing the enzyme’s amino acid sequence with other known sequences. Then they ran computer simulations of how it might move in order to find possible structures, after which they looked at plausible combinations for how a substrate, a small peptide, might stick to the enzyme. In this way it was possible to predict the structure of the enzyme, how the substrate bonds, and the mechanism and rapidity of the chemical reaction. The fit with experimental data was good.

“In the past researchers have managed to predict reaction mechanisms on the basis of known structures, but this time we started from scratch.”

The malaria parasite under study, Plasmodium falciparum, has several enzymes that directly attack hemoglobin in the blood when it invades. There is a tremendous interest in these enzymes among drug researchers. Today 1-3 million people die of malaria every year, and there is growing concern that the numbers will increase further.

“Millions of people are infected, and the parasite quickly develops resistance to new drugs,” says Johan Åqvist.

Anneli Waara | alfa
Further information:
http://www.uu.se

More articles from Life Sciences:

nachricht Tag it EASI – a new method for accurate protein analysis
19.06.2018 | Max-Planck-Institut für Biochemie

nachricht How to track and trace a protein: Nanosensors monitor intracellular deliveries
19.06.2018 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Carbon nanotube optics provide optical-based quantum cryptography and quantum computing

19.06.2018 | Physics and Astronomy

How to track and trace a protein: Nanosensors monitor intracellular deliveries

19.06.2018 | Life Sciences

New material for splitting water

19.06.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>