Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New malaria enzyme laid bare with help of computer calculations

08.12.2004


Using only computers, a research team at Uppsala University in Sweden has managed to reveal both the structure and the function of a newly discovered enzyme from the most dangerous malaria parasite, Plasmodium falciparum. All that was needed was the amino acid sequence of the enzyme. The findings may represent a breakthrough for future pharmaceutical research.

The research was carried out within the framework of a project (RAPID) at the Uppsala University Center for Structural Biology, Medical Chemistry, and Computer Chemistry, which was established last year and is directed by Professor Alwyn Jones. The aim is to develop drugs for some of the most severe and widely spread diseases in the world, such as malaria and TB. The results, which recently came out as an “accelerated publication” in the journal Biochemistry, are the work of Professor Johan Åqvist and doctoral student Sinisa Bjelic.

“The enzyme we studied is a new type, with previously unknown catalyst groups. This made it especially interesting as a target molecule for new drugs. Using only computer calculations, we succeeded in revealing both what it looks like and how it functions. It’s the first time anybody ever did that,” says Johan Åqvist.



They started by comparing the enzyme’s amino acid sequence with other known sequences. Then they ran computer simulations of how it might move in order to find possible structures, after which they looked at plausible combinations for how a substrate, a small peptide, might stick to the enzyme. In this way it was possible to predict the structure of the enzyme, how the substrate bonds, and the mechanism and rapidity of the chemical reaction. The fit with experimental data was good.

“In the past researchers have managed to predict reaction mechanisms on the basis of known structures, but this time we started from scratch.”

The malaria parasite under study, Plasmodium falciparum, has several enzymes that directly attack hemoglobin in the blood when it invades. There is a tremendous interest in these enzymes among drug researchers. Today 1-3 million people die of malaria every year, and there is growing concern that the numbers will increase further.

“Millions of people are infected, and the parasite quickly develops resistance to new drugs,” says Johan Åqvist.

Anneli Waara | alfa
Further information:
http://www.uu.se

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>