Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Free Radicals and Fertilization: Study Reveals Egg Protection Secret

07.12.2004


Sea urchin eggs, a common model for human fertility research, create a protein shield just minutes after fertilization. In Developmental Cell, Brown University biologists reveal their discovery of an enzyme that generates hydrogen peroxide, a free radical critical to this protective process. The finding illuminates a survival mechanism shared across species.




Brown University researchers have discovered an enzyme that produces hydrogen peroxide in the fertilized eggs of sea urchins. This infection-fighting free radical helps create a barrier around the egg, keeping out invading sperm, harmful bacteria and other destructive forces.

Their finding, published in the current issue of Developmental Cell, solves a century-old biology riddle. In most animals, such as sea urchins, fish, mice and humans, only one sperm fertilizes an egg. If multiple sperm fuse with the egg, a process known as polyspermy, the embryo will die. So the fertilized egg quickly creates protective barriers. Scientists have known for more than 30 years that, in sea urchins, hydrogen peroxide is a key player in this process. Until now, they did not know how that potentially toxic substance was produced or controlled.


Julian Wong, a Brown research associate and lead researcher on the project, set out to find the gene responsible for pumping out this peroxide. In the Sea Urchin Genome Project database, Wong found a gene that he suspected was key for this process because it looked similar to one that produces peroxide in the human thyroid.

After a series of experiments using sea urchins, Wong found that his guess was correct. While the egg matures, this gene is turned on and creates an enzyme known as urchin dual oxidase, or Udx1. Immediately after fertilization, Udx1 is activated to produce peroxide. The peroxide is then used to “stitch” together proteins on a thin layer surrounding the egg, hardening it into a tough coating. The process is complete about five minutes after fertilization.

Wong showed this essential role by obstructing the function of Udx1. When its activity was blocked, the protective barrier didn’t harden, leaving the embryo vulnerable.

The authors were surprised by the results. “The best model we had was in white blood cells, which use a similar burst of hydrogen peroxide to kill bacteria,” Wong said. “So we always thought that the mechanism would be similar. But what happens in the egg is more like what happens in the thyroid, suggesting that this Udx1 mechanism is versatile and non-lethal.”

“Nature is thrifty,” said Gary Wessel, senior scientist on the project and professor of biology in the Department of Molecular Biology, Cell Biology and Biochemistry. “Cells can take one process, adapt it, and use it in completely different ways.”

Wessel said that human eggs also create a barrier against polyspermy after fertilization. While the production of peroxide in this process hasn’t been proven in humans, Wessel said scientists suspect a similar process occurs. If true, a damaged or missing peroxide-producing gene could explain one source of infertility.

Wessel said their finding also sheds light on the contributions of free radicals to reproductive biology. Typically, free radicals damage cells. But Wessel said these molecules can also be helpful, killing germs, reducing high blood pressure or, in this case, protecting fertilized eggs.

Robbert Créton, assistant professor of biology, also participated in the study. The National Institutes of Health and the National Science Foundation funded the work.

Wendy Lawton | EurekAlert!
Further information:
http://www.brown.edu

More articles from Life Sciences:

nachricht Scientists unlock ability to generate new sensory hair cells
22.02.2017 | Brigham and Women's Hospital

nachricht New insights into the information processing of motor neurons
22.02.2017 | Max Planck Florida Institute for Neuroscience

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>