Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Free Radicals and Fertilization: Study Reveals Egg Protection Secret

07.12.2004


Sea urchin eggs, a common model for human fertility research, create a protein shield just minutes after fertilization. In Developmental Cell, Brown University biologists reveal their discovery of an enzyme that generates hydrogen peroxide, a free radical critical to this protective process. The finding illuminates a survival mechanism shared across species.




Brown University researchers have discovered an enzyme that produces hydrogen peroxide in the fertilized eggs of sea urchins. This infection-fighting free radical helps create a barrier around the egg, keeping out invading sperm, harmful bacteria and other destructive forces.

Their finding, published in the current issue of Developmental Cell, solves a century-old biology riddle. In most animals, such as sea urchins, fish, mice and humans, only one sperm fertilizes an egg. If multiple sperm fuse with the egg, a process known as polyspermy, the embryo will die. So the fertilized egg quickly creates protective barriers. Scientists have known for more than 30 years that, in sea urchins, hydrogen peroxide is a key player in this process. Until now, they did not know how that potentially toxic substance was produced or controlled.


Julian Wong, a Brown research associate and lead researcher on the project, set out to find the gene responsible for pumping out this peroxide. In the Sea Urchin Genome Project database, Wong found a gene that he suspected was key for this process because it looked similar to one that produces peroxide in the human thyroid.

After a series of experiments using sea urchins, Wong found that his guess was correct. While the egg matures, this gene is turned on and creates an enzyme known as urchin dual oxidase, or Udx1. Immediately after fertilization, Udx1 is activated to produce peroxide. The peroxide is then used to “stitch” together proteins on a thin layer surrounding the egg, hardening it into a tough coating. The process is complete about five minutes after fertilization.

Wong showed this essential role by obstructing the function of Udx1. When its activity was blocked, the protective barrier didn’t harden, leaving the embryo vulnerable.

The authors were surprised by the results. “The best model we had was in white blood cells, which use a similar burst of hydrogen peroxide to kill bacteria,” Wong said. “So we always thought that the mechanism would be similar. But what happens in the egg is more like what happens in the thyroid, suggesting that this Udx1 mechanism is versatile and non-lethal.”

“Nature is thrifty,” said Gary Wessel, senior scientist on the project and professor of biology in the Department of Molecular Biology, Cell Biology and Biochemistry. “Cells can take one process, adapt it, and use it in completely different ways.”

Wessel said that human eggs also create a barrier against polyspermy after fertilization. While the production of peroxide in this process hasn’t been proven in humans, Wessel said scientists suspect a similar process occurs. If true, a damaged or missing peroxide-producing gene could explain one source of infertility.

Wessel said their finding also sheds light on the contributions of free radicals to reproductive biology. Typically, free radicals damage cells. But Wessel said these molecules can also be helpful, killing germs, reducing high blood pressure or, in this case, protecting fertilized eggs.

Robbert Créton, assistant professor of biology, also participated in the study. The National Institutes of Health and the National Science Foundation funded the work.

Wendy Lawton | EurekAlert!
Further information:
http://www.brown.edu

More articles from Life Sciences:

nachricht Immune Defense Without Collateral Damage
23.01.2017 | Universität Basel

nachricht The interactome of infected neural cells reveals new therapeutic targets for Zika
23.01.2017 | D'Or Institute for Research and Education

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>