Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Free Radicals and Fertilization: Study Reveals Egg Protection Secret

07.12.2004


Sea urchin eggs, a common model for human fertility research, create a protein shield just minutes after fertilization. In Developmental Cell, Brown University biologists reveal their discovery of an enzyme that generates hydrogen peroxide, a free radical critical to this protective process. The finding illuminates a survival mechanism shared across species.




Brown University researchers have discovered an enzyme that produces hydrogen peroxide in the fertilized eggs of sea urchins. This infection-fighting free radical helps create a barrier around the egg, keeping out invading sperm, harmful bacteria and other destructive forces.

Their finding, published in the current issue of Developmental Cell, solves a century-old biology riddle. In most animals, such as sea urchins, fish, mice and humans, only one sperm fertilizes an egg. If multiple sperm fuse with the egg, a process known as polyspermy, the embryo will die. So the fertilized egg quickly creates protective barriers. Scientists have known for more than 30 years that, in sea urchins, hydrogen peroxide is a key player in this process. Until now, they did not know how that potentially toxic substance was produced or controlled.


Julian Wong, a Brown research associate and lead researcher on the project, set out to find the gene responsible for pumping out this peroxide. In the Sea Urchin Genome Project database, Wong found a gene that he suspected was key for this process because it looked similar to one that produces peroxide in the human thyroid.

After a series of experiments using sea urchins, Wong found that his guess was correct. While the egg matures, this gene is turned on and creates an enzyme known as urchin dual oxidase, or Udx1. Immediately after fertilization, Udx1 is activated to produce peroxide. The peroxide is then used to “stitch” together proteins on a thin layer surrounding the egg, hardening it into a tough coating. The process is complete about five minutes after fertilization.

Wong showed this essential role by obstructing the function of Udx1. When its activity was blocked, the protective barrier didn’t harden, leaving the embryo vulnerable.

The authors were surprised by the results. “The best model we had was in white blood cells, which use a similar burst of hydrogen peroxide to kill bacteria,” Wong said. “So we always thought that the mechanism would be similar. But what happens in the egg is more like what happens in the thyroid, suggesting that this Udx1 mechanism is versatile and non-lethal.”

“Nature is thrifty,” said Gary Wessel, senior scientist on the project and professor of biology in the Department of Molecular Biology, Cell Biology and Biochemistry. “Cells can take one process, adapt it, and use it in completely different ways.”

Wessel said that human eggs also create a barrier against polyspermy after fertilization. While the production of peroxide in this process hasn’t been proven in humans, Wessel said scientists suspect a similar process occurs. If true, a damaged or missing peroxide-producing gene could explain one source of infertility.

Wessel said their finding also sheds light on the contributions of free radicals to reproductive biology. Typically, free radicals damage cells. But Wessel said these molecules can also be helpful, killing germs, reducing high blood pressure or, in this case, protecting fertilized eggs.

Robbert Créton, assistant professor of biology, also participated in the study. The National Institutes of Health and the National Science Foundation funded the work.

Wendy Lawton | EurekAlert!
Further information:
http://www.brown.edu

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>