Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

9,000-year history of Chinese fermented beverages confirmed

07.12.2004


Chemical analyses of ancient organics absorbed, and preserved, in pottery jars from the Neolithic village of Jiahu, in Henan province, Northern China, have revealed that a mixed fermented beverage of rice, honey, and fruit was being produced as early as 9,000 years ago, approximately the same time that barley beer and grape wine were beginning to be made in the Middle East.

In addition, liquids more than 3,000 years old, remarkably preserved inside tightly lidded bronze vessels, were chemically analyzed. These vessels from the capital city of Anyang and an elite burial in the Yellow River Basin, dating to the Shang and Western Zhou Dynasties (ca. 1250-1000 B.C.), contained specialized rice and millet "wines." The beverages had been flavored with herbs, flowers, and/or tree resins, and are similar to herbal wines described in the Shang dynasty oracle inscriptions.

The new discoveries, made by an international, multi-disciplinary team of researchers including the University of Pennsylvania Museum’s archaeochemist Dr. Patrick McGovern of MASCA (Museum Applied Science Center for Archaeology), provide the first direct chemical evidence for early fermented beverages in ancient Chinese culture, thus broadening our understanding of the key technological and cultural roles that fermented beverages played in China.



The discoveries and their implications for understanding ancient Chinese culture will be published on-line the week of December 6, 2004 in the PNAS Early Edition (Proceedings of the National Academy of Sciences): "Fermented Beverages of Pre-and Proto-historic China," by Patrick E. McGovern, Juzhong Zhang, Jigen Tang, Zhiquing Zhang, Gretchen R. Hall, Robert A. Moreau, Alberto Nuñez, Eric D. Butrym, Michael P. Richards, Chen-shan Wang, Guangsheng Cheng, Zhijun Zhao, and Changsui Wang. Dr. McGovern worked with this team of researchers, associated with the University of Science and Technology of China in Hefei, the Institute of Archaeology in Beijing, the Institute of Cultural Relics and Archaeology of Henan Province, the U.S. Department of Agriculture, the Firmenich Corporation, Max Planck Institute for Evolutionary Anthropology in Leipzig (Germany), and the Institute of Microbiology of the Chinese Academy of Sciences. The PNAS website address to the article is: http://www.pnas.org/cgi/doi/10.1073/pnas.0407921101.

Dr. McGovern first met with archaeologists and scientists, including his co-authors on the paper, in China in 2000, returning there in 2001 and 2002. Because of the great interest in using modern scientific techniques to investigate a crucial aspect of ancient Chinese culture, collaboration was initiated and samples carried back to the U.S. for analysis. Chemical tests of the pottery from the Neolithic village of Jiahu was of special interest, because it is some of the earliest known pottery from China. This site was already famous for yielding some of the earliest musical instruments and domesticated rice, as well as possibly the earliest Chinese pictographic writing. Through a variety of chemical methods including gas and liquid chromatography-mass spectrometry, infrared spectrometry, and stable isotope analysis, finger-print compounds were identified, including those for hawthorn fruit and/or wild grape, beeswax associated with honey, and rice.

The prehistoric beverage at Jiahu, Dr. McGovern asserts, paved the way for unique cereal beverages of the proto-historic 2nd millennium BC, remarkably preserved as liquids inside sealed bronze vessels of the Shang and Western Zhou Dynasties. The vessels had become hermetically sealed when their tightly fitting lids corroded, preventing evaporation. Numerous bronze vessels with these liquids have been excavated at major urban centers along the Yellow River, especially from elite burials of high-ranking individuals. Besides serving as burial goods to sustain the dead in the afterlife, the vessels and their contents can also be related to funerary ceremonies in which living intermediaries communicated with the deceased ancestor and gods in an altered state of consciousness after imbibing a fermented beverage.

"The fragrant aroma of the liquids inside the tightly lidded jars and vats, when their lids were first removed after some three thousand years, suggested that they indeed represented Shang and Western Zhou fermented beverages, " Dr. McGovern noted. Samples of liquid inside vessels from the important capital of Anyang and the Changzikou Tomb in Luyi county were analyzed. The combined archaeochemical, archaeobotanical and archaeological evidence for the Changzikou Tomb and Anyang liquids point to their being fermented and filtered rice or millet "wines," either jiu or chang, its herbal equivalent, according to the Shang Dynasty oracle inscriptions. Specific aromatic herbs (e.g., wormword), flowers (e.g., chrysanthemum), and/or tree resins (e.g., China fir and elemi) had been added to the wines, according to detected compounds such as camphor and alpha-cedrene, beta-amyrin and oleanolic acid, as well as benzaldehyde, acetic acid, and short-chain alcohols characteristic of rice and millet wines.

Both jiu and chang of proto-historic China were likely made by mold saccharification, a uniquely Chinese contribution to beverage-making in which an assemblage of mold species are used to break down the carbohydrates of rice and other grains into simple, fermentable sugars. Yeast for fermentation of the simple sugars enters the process adventitiously, either brought in by insects or settling on to large and small cakes of the mold conglomerate (qu) from the rafters of old buildings. As many as 100 special herbs, including wormwood, are used today to make qu, and some have been shown to increase the yeast activity by as much as seven-fold.

For Dr. McGovern, who began his role in the Chinese wine studies in 2000, this discovery offers an exciting new chapter in our rapidly growing understanding of the importance of fermented beverages in human culture around the world.

In 1990, he and colleagues Rudolph H. Michel and Virginia R. Badler first made headlines with the discovery of what was then the earliest known chemical evidence of wine, dating to ca. 3500-3100 B.C., from Godin Tepe in the Zagros Mountains of western Iran (see "Drink and Be Merry!: Infrared Spectroscopy and Ancient Near Eastern Wine" in Organic Contents of Ancient Vessels: Materials Analysis and Archaeological Investigation, eds. W. R. Biers and P.E. McGovern, MASCA Research Papers in Science and Archaeology, vol. 7, Philadelphia: MASCA, University of Pennsylvania Museum, University of Pennsylvania).

That finding was followed up by the earliest chemically confirmed barley beer in 1992, inside another vessel from the same room at Godin Tepe that housed the wine jars. In 1994, chemical testing confirmed resinated wine inside two jars excavated by a Penn archaeological team at the Neolithic site of Hajji Firuz Tepe, Iran, dating to ca. 5400 B.C. and some 2000 years earlier than the Godin Tepe jar. Dr. McGovern is author of Ancient Wine: The Search for the Origins of Viniculture (Princeton University Press, 2003).

Pam Kosty | EurekAlert!
Further information:
http://www.upenn.edu
http://www.museum.upenn.edu

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>