Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Follow the Embryonic Stem Cell Road to Cardiac Cell Progenitors

06.12.2004


Even the Wizard of Oz couldn’t give the Tin Man a heart but the Johns Hopkins Medical Institution laboratory of John Gearhart has taken another small step on the road toward replenishing damaged cardiac tissue with pre-cursor cardiac cells grown from human embryonic stem cells (ES cells). Gearhart and his colleague, Nicolas Christoforou, here reveal preliminary data demonstrating what they say is a highly reproducible system for deriving cardiac progenitor cells from ES cells through controlled differentiation.



Differentiation is cell fate. The fate of any embryonic stem cell in a human blastocyst is virtually unlimited since any ES cell can differentiate into any of the three primary germ layers in the embryo— the ectoderm, mesoderm and endoderm. These germ cells can, in turn, differentiate into any of the 200 cell types in the human body. The ability to control differentiation in the laboratory is vital if ES cells are to be used as research tools into fundamental cell development and as a possible source for cell-based transplantation therapies.

The Gearhart lab reports that grown in culture, differentiating ES cells form three-dimensional structures termed embryoid bodies (EBs). Molecular signals and proteins expressed in EBs are similar to those present in early embryogenesis. These markers can be used as indicators of the cell types present in the differentiating EBs. The cells fated to become heart muscle, cardiomyocytes, differentiate in vivo through a conserved signaling pathway that contains both activating and inhibitory signals. These signaling pathways allow an area of the embryonic mesoderm to differentiate first into cardiac progenitor cells and then into the many cell types that constitute a functional heart. The presence of cardiac progenitor cells and cardiomyocytes in the differentiating ES cells is directly correlated to the expression of the same activating and inhibitory signals normally found in heart.


Expression of the appropriate molecular markers (genes with names like Nkx2.5, Tbx5, Tbx20) pinpoints the initial formation of cardiac progenitor cells in differentiating EBs followed by their further differentiation into functional cardiomyocytes (with yet another set of marker genes expressed--aMHC, TNNT2). The level of gene expression is also directly correlated to the percentage of cardiac progenitor cells in the EBs. Introduction into ES cells of a transgene that results in expression of a fluorescent protein under the control of the DNA sequences that control Nkx2.5 expression enables the researchers to observe the emergence of these cells in vitro in real time.

Preliminary data show that the emergence of cardiac progenitor cells and the pattern of marker expression in EBs closely resemble cardiogenesis in vivo, and make this a highly reproducible system of deriving cardiac progenitor cells from ES cells. Enhancement of cardiogenesis is achieved through monitoring of the level of cardiac gene expression while altering the differentiation conditions. Says Christoforou, “The information gained from this system allows the identification and efficient isolation of cardiac progenitors from ES cells. These cells are ideal candidates not only for cell-based transplantation therapies, but also for gene expression assays.”

Cardiac progenitor cells from embryonic stem cells, N. Christoforou, J. Gearhart; ICE, Johns Hopkins Medical Institution, Baltimore, MD.

At the meeting: Session 238 Embryonic Stem Cells, Poster Presentation 1208, Halls D/E. Author presents: Monday, Dec. 6, Noon—1:30 PM.

| newswise
Further information:
http://www.ascb.org

More articles from Life Sciences:

nachricht Hunting pathogens at full force
22.03.2017 | Helmholtz-Zentrum für Infektionsforschung

nachricht A 155 carat diamond with 92 mm diameter
22.03.2017 | Universität Augsburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars

22.03.2017 | Physics and Astronomy

New gel-like coating beefs up the performance of lithium-sulfur batteries

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>