Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Yerkes researchers discover baisis for determining handedness in chimpanzees

06.12.2004


Hand preference and language go hand-in-hand, or do they? According to researchers at the Yerkes National Primate Research Center of Emory University, handedness is not associated with the language area of the brain, as has been the accepted scientific thought throughout history. Rather, handedness is associated with the KNOB, the area of the brain known for controlling hand movements in primates and, now, for determining handedness in chimpanzees. The researchers report their groundbreaking findings in the December 6 issue of Behavioral Neuroscience.



According to Bill Hopkins, PhD, research associate in the Division of Psychobiology at the Yerkes Research Center and the study’s lead investigator, "The dominant scientific view has linked hand preference in humans with the area of the brain that controls language. After observing hand preference in chimpanzees, which have no comparable language capabilities, we concluded there must be another reason for handedness. Because human and chimpanzee brain structures are so similar, we wanted to determine if human handedness evolved from an area of the brain other than the language area."

Hopkins and his research team coordinated a series of motor tasks with chimpanzees to determine each animal’s hand preference and then looked at magnetic resonance imaging (MRI) scans of the animals’ brains. They found asymmetries in the KNOB and in the area that is homologous to the human language brain region. A detailed review of the data showed the asymmetries in the KNOB corresponded to right- and left-handedness whereas the asymmetries in the language area did not, leading the researchers to conclude handedness is linked explicitly to the KNOB and not other brain regions.


In a separate study, which is published in the same issue of Behavioral Neuroscience, Dr. Hopkins’ team supported their findings about asymmetry by confirming that the brain structure of chimpanzees is similar to the brain structure of humans. Using MRI scans of the chimpanzees’ brains, the researchers discovered asymmetries in each brain hemisphere, a characteristic previously thought unique to humans. "For years, researchers thought asymmetry is part of what distinguished the human brain from that of chimpanzees, but our results challenge that theory," said Dr. Hopkins.

To further explore what distinguishes the human brain from those of other species, Yerkes researchers are conducting a variety of studies to identify the changes in gene activity and biochemistry that occurred during human brain evolution as well as related changes in the connectivity and functions of the brain.

The Yerkes National Primate Research Center is one of eight national primate research centers funded by the National Institutes of Health. The Center is a recognized leader for its biomedical and behavioral studies involving nonhuman primates, which provide a critical link between research with small animals and clinical trials with humans. Yerkes researchers are poised with the knowledge and passion to conduct groundbreaking research programs and are on the forefront of developing vaccines for AIDS and malaria, and treatments for cocaine addiction and Parkinson’s disease. Yerkes researchers also are leading programs that include seeking a better understanding aging and cognition, pioneering organ transplant procedures, determining the behavioral effects of hormone replacement therapy and shedding light on human behavioral evolution.

Kelly Thompson | EurekAlert!
Further information:
http://www.emory.edu

More articles from Life Sciences:

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

nachricht How herpesviruses win the footrace against the immune system
26.05.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>