Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Yerkes researchers discover baisis for determining handedness in chimpanzees

06.12.2004


Hand preference and language go hand-in-hand, or do they? According to researchers at the Yerkes National Primate Research Center of Emory University, handedness is not associated with the language area of the brain, as has been the accepted scientific thought throughout history. Rather, handedness is associated with the KNOB, the area of the brain known for controlling hand movements in primates and, now, for determining handedness in chimpanzees. The researchers report their groundbreaking findings in the December 6 issue of Behavioral Neuroscience.



According to Bill Hopkins, PhD, research associate in the Division of Psychobiology at the Yerkes Research Center and the study’s lead investigator, "The dominant scientific view has linked hand preference in humans with the area of the brain that controls language. After observing hand preference in chimpanzees, which have no comparable language capabilities, we concluded there must be another reason for handedness. Because human and chimpanzee brain structures are so similar, we wanted to determine if human handedness evolved from an area of the brain other than the language area."

Hopkins and his research team coordinated a series of motor tasks with chimpanzees to determine each animal’s hand preference and then looked at magnetic resonance imaging (MRI) scans of the animals’ brains. They found asymmetries in the KNOB and in the area that is homologous to the human language brain region. A detailed review of the data showed the asymmetries in the KNOB corresponded to right- and left-handedness whereas the asymmetries in the language area did not, leading the researchers to conclude handedness is linked explicitly to the KNOB and not other brain regions.


In a separate study, which is published in the same issue of Behavioral Neuroscience, Dr. Hopkins’ team supported their findings about asymmetry by confirming that the brain structure of chimpanzees is similar to the brain structure of humans. Using MRI scans of the chimpanzees’ brains, the researchers discovered asymmetries in each brain hemisphere, a characteristic previously thought unique to humans. "For years, researchers thought asymmetry is part of what distinguished the human brain from that of chimpanzees, but our results challenge that theory," said Dr. Hopkins.

To further explore what distinguishes the human brain from those of other species, Yerkes researchers are conducting a variety of studies to identify the changes in gene activity and biochemistry that occurred during human brain evolution as well as related changes in the connectivity and functions of the brain.

The Yerkes National Primate Research Center is one of eight national primate research centers funded by the National Institutes of Health. The Center is a recognized leader for its biomedical and behavioral studies involving nonhuman primates, which provide a critical link between research with small animals and clinical trials with humans. Yerkes researchers are poised with the knowledge and passion to conduct groundbreaking research programs and are on the forefront of developing vaccines for AIDS and malaria, and treatments for cocaine addiction and Parkinson’s disease. Yerkes researchers also are leading programs that include seeking a better understanding aging and cognition, pioneering organ transplant procedures, determining the behavioral effects of hormone replacement therapy and shedding light on human behavioral evolution.

Kelly Thompson | EurekAlert!
Further information:
http://www.emory.edu

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>