Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Yerkes researchers discover baisis for determining handedness in chimpanzees

06.12.2004


Hand preference and language go hand-in-hand, or do they? According to researchers at the Yerkes National Primate Research Center of Emory University, handedness is not associated with the language area of the brain, as has been the accepted scientific thought throughout history. Rather, handedness is associated with the KNOB, the area of the brain known for controlling hand movements in primates and, now, for determining handedness in chimpanzees. The researchers report their groundbreaking findings in the December 6 issue of Behavioral Neuroscience.



According to Bill Hopkins, PhD, research associate in the Division of Psychobiology at the Yerkes Research Center and the study’s lead investigator, "The dominant scientific view has linked hand preference in humans with the area of the brain that controls language. After observing hand preference in chimpanzees, which have no comparable language capabilities, we concluded there must be another reason for handedness. Because human and chimpanzee brain structures are so similar, we wanted to determine if human handedness evolved from an area of the brain other than the language area."

Hopkins and his research team coordinated a series of motor tasks with chimpanzees to determine each animal’s hand preference and then looked at magnetic resonance imaging (MRI) scans of the animals’ brains. They found asymmetries in the KNOB and in the area that is homologous to the human language brain region. A detailed review of the data showed the asymmetries in the KNOB corresponded to right- and left-handedness whereas the asymmetries in the language area did not, leading the researchers to conclude handedness is linked explicitly to the KNOB and not other brain regions.


In a separate study, which is published in the same issue of Behavioral Neuroscience, Dr. Hopkins’ team supported their findings about asymmetry by confirming that the brain structure of chimpanzees is similar to the brain structure of humans. Using MRI scans of the chimpanzees’ brains, the researchers discovered asymmetries in each brain hemisphere, a characteristic previously thought unique to humans. "For years, researchers thought asymmetry is part of what distinguished the human brain from that of chimpanzees, but our results challenge that theory," said Dr. Hopkins.

To further explore what distinguishes the human brain from those of other species, Yerkes researchers are conducting a variety of studies to identify the changes in gene activity and biochemistry that occurred during human brain evolution as well as related changes in the connectivity and functions of the brain.

The Yerkes National Primate Research Center is one of eight national primate research centers funded by the National Institutes of Health. The Center is a recognized leader for its biomedical and behavioral studies involving nonhuman primates, which provide a critical link between research with small animals and clinical trials with humans. Yerkes researchers are poised with the knowledge and passion to conduct groundbreaking research programs and are on the forefront of developing vaccines for AIDS and malaria, and treatments for cocaine addiction and Parkinson’s disease. Yerkes researchers also are leading programs that include seeking a better understanding aging and cognition, pioneering organ transplant procedures, determining the behavioral effects of hormone replacement therapy and shedding light on human behavioral evolution.

Kelly Thompson | EurekAlert!
Further information:
http://www.emory.edu

More articles from Life Sciences:

nachricht Rochester scientists discover gene controlling genetic recombination rates
23.04.2018 | University of Rochester

nachricht One step closer to reality
20.04.2018 | Max-Planck-Institut für Entwicklungsbiologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Structured light and nanomaterials open new ways to tailor light at the nanoscale

23.04.2018 | Physics and Astronomy

On the shape of the 'petal' for the dissipation curve

23.04.2018 | Physics and Astronomy

Clean and Efficient – Fraunhofer ISE Presents Hydrogen Technologies at the HANNOVER MESSE 2018

23.04.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>