Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Yerkes researchers discover baisis for determining handedness in chimpanzees

06.12.2004


Hand preference and language go hand-in-hand, or do they? According to researchers at the Yerkes National Primate Research Center of Emory University, handedness is not associated with the language area of the brain, as has been the accepted scientific thought throughout history. Rather, handedness is associated with the KNOB, the area of the brain known for controlling hand movements in primates and, now, for determining handedness in chimpanzees. The researchers report their groundbreaking findings in the December 6 issue of Behavioral Neuroscience.



According to Bill Hopkins, PhD, research associate in the Division of Psychobiology at the Yerkes Research Center and the study’s lead investigator, "The dominant scientific view has linked hand preference in humans with the area of the brain that controls language. After observing hand preference in chimpanzees, which have no comparable language capabilities, we concluded there must be another reason for handedness. Because human and chimpanzee brain structures are so similar, we wanted to determine if human handedness evolved from an area of the brain other than the language area."

Hopkins and his research team coordinated a series of motor tasks with chimpanzees to determine each animal’s hand preference and then looked at magnetic resonance imaging (MRI) scans of the animals’ brains. They found asymmetries in the KNOB and in the area that is homologous to the human language brain region. A detailed review of the data showed the asymmetries in the KNOB corresponded to right- and left-handedness whereas the asymmetries in the language area did not, leading the researchers to conclude handedness is linked explicitly to the KNOB and not other brain regions.


In a separate study, which is published in the same issue of Behavioral Neuroscience, Dr. Hopkins’ team supported their findings about asymmetry by confirming that the brain structure of chimpanzees is similar to the brain structure of humans. Using MRI scans of the chimpanzees’ brains, the researchers discovered asymmetries in each brain hemisphere, a characteristic previously thought unique to humans. "For years, researchers thought asymmetry is part of what distinguished the human brain from that of chimpanzees, but our results challenge that theory," said Dr. Hopkins.

To further explore what distinguishes the human brain from those of other species, Yerkes researchers are conducting a variety of studies to identify the changes in gene activity and biochemistry that occurred during human brain evolution as well as related changes in the connectivity and functions of the brain.

The Yerkes National Primate Research Center is one of eight national primate research centers funded by the National Institutes of Health. The Center is a recognized leader for its biomedical and behavioral studies involving nonhuman primates, which provide a critical link between research with small animals and clinical trials with humans. Yerkes researchers are poised with the knowledge and passion to conduct groundbreaking research programs and are on the forefront of developing vaccines for AIDS and malaria, and treatments for cocaine addiction and Parkinson’s disease. Yerkes researchers also are leading programs that include seeking a better understanding aging and cognition, pioneering organ transplant procedures, determining the behavioral effects of hormone replacement therapy and shedding light on human behavioral evolution.

Kelly Thompson | EurekAlert!
Further information:
http://www.emory.edu

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>